6 research outputs found

    Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-gamma as a Key Player of the Enhanced Innate Immune Response in Lungs

    Get PDF
    Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-gamma) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-gamma.IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-gamma gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases

    Distribution and quantitative estimates of variant Creutzfeldt Jakob Diseases prions in the tissues of clinical and asymptomatic patients

    Get PDF
    In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD

    Vaccination of Sheep with Bovine Viral Diarrhea Vaccines Does Not Protect against Fetal Infection after Challenge of Pregnant Ewes with Border Disease Virus

    No full text
    Border Disease (BD) is a major sheep disease characterized by immunosuppression, congenital disorders, abortion, and birth of lambs persistently infected (PI) by Border Disease Virus (BDV). Control measures are based on the elimination of PI lambs, biosecurity, and frequent vaccination which aims to prevent fetal infection and birth of PI. As there are no vaccines against BDV, farmers use vaccines directed against the related Bovine Viral Diarrhea Virus (BVDV). To date, there is no published evidence of cross-effectiveness of BVDV vaccination against BDV infection in sheep. We tested three commonly used BVDV vaccines, at half the dose used in cattle, for their efficacy of protection against a BDV challenge of ewes at 52 days of gestation. Vaccination limits the duration of virus-induced leukopenia after challenge, suggesting partial protection in transient infection. Despite the presence of BDV neutralizing antibodies in vaccinated ewes on the day of the challenge, fetuses of vaccinated and unvaccinated sheep were, two months after, highly positive for BDV RNA loads and seronegative for antibodies. Therefore, BVDV vaccination at half dose was not sufficient to prevent ovine fetal infection by BDV in a severe challenge model and can only be reconsidered as a complementary mean in BD control

    Baseline circulating unswitched memory B cells and B-cell related soluble factors are associated with overall survival in patients with clear cell renal cell carcinoma treated with nivolumab within the NIVOREN GETUG-AFU 26 study

    No full text
    International audienceBACKGROUND: The phase II NIVOREN GETUG-AFU 26 study reported safety and efficacy of nivolumab in patients with metastatic clear cell renal cell carcinoma (m-ccRCC) in a ’real-world setting’. We conducted a translational-research program to determine whether specific circulating immune-cell populations and/or soluble factors at baseline were predictive of clinical outcomes in patients with m-ccRCC treated with nivolumab within the NIVOREN study. METHODS: Absolute numbers of 106 circulating immune-cell populations were prospectively analyzed in patients treated at a single institution within the NIVOREN trial with available fresh-whole-blood, using dry formulation panels for multicolor flow cytometry. In addition, a panel of 14 predefined soluble factors was quantified for each baseline plasma sample using the Meso-Scale-Discovery immunoassay. The remaining patients with available plasma sample were used as a validation cohort for the soluble factor quantification analysis. Tumor immune microenvironment characterization of all patients included in the translational program of the study was available. The association of blood and tissue-based biomarkers, with overall survival (OS), progression-free survival (PFS) and response was analyzed. RESULTS: Among the 44 patients, baseline unswitched memory B cells (NSwM B cells) were enriched in responders (p=0.006) and associated with improved OS (HR=0.08, p=0.002) and PFS (HR=0.54, p=0.048). Responders were enriched in circulating T follicular helper (Tfh) (p=0.027) and tertiary lymphoid structures (TLS) (p=0.043). Circulating NSwM B cells positively correlated with Tfh (r=0.70, p<0.001). Circulating NSwM B cells correlated positively with TLS and CD20 +B cells at the tumor center (r=0.59, p=0.044, and r=0.52, p=0.033) and inversely correlated with BCA-1/CXCL13 and BAFF (r=-0.55 and r=-0.42, p<0.001). Tfh cells also inversely correlated with BCA-1/CXCL13 (r=-0.61, p<0.001). IL-6, BCA-1/CXCL13 and BAFF significantly associated with worse OS in the discovery (n=40) and validation cohorts (n=313). CONCLUSION: We report the first fresh blood immune-monitoring of patients with m-ccRCC treated with nivolumab. Baseline blood concentration of NSwM B cells was associated to response, PFS and OS in patients with m-ccRCC treated with nivolumab. BCA-1/CXCL13 and BAFF, inversely correlated to NSwM B cells, were both associated with worse OS in discovery and validation cohorts. Our data confirms a role for B cell subsets in the response to immune checkpoint blockade therapy in patients with m-ccRCC. Further studies are needed to confirm these findings

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore