2,235 research outputs found

    Statistics of Giant Radio Halos from Electron Reacceleration Models

    Full text link
    The most important evidence of non-thermal phenomena in galaxy clusters comes from Giant Radio Halos (GRHs), synchrotron radio sources extended over Mpc scales, detected in a growing number of massive galaxy clusters. A promising possibility to explain these sources is given by "in situ" stochastic reacceleration of relativistic electrons by turbulence generated in the cluster volume during merger events. Cassano & Brunetti (2005) have recently shown that the expected fraction of clusters with GRHs and the increase of such a fraction with cluster mass can be reconciled with present observations provided that a fraction of 20-30 % of the turbulence in clusters is in the form of compressible modes. In this work we extend these calculations by including a scaling of the magnetic field strength with cluster mass. We show that the observed correlations between the synchrotron radio power of a sample of 17 GRHs and the X-ray properties of the hosting clusters are consistent with, and actually predicted by a magnetic field dependence on the virial mass of the form B \propto M^b, with b>0.5 and typical micro Gauss strengths of the average B intensity. The occurrence of GRHs as a function of both cluster mass and redshift is obtained. The most relevant findings are that the predicted luminosity functions of GRHs are peaked around a power P_{1.4 GHz} 10^{24} W/Hz, and severely cut-off at low radio powers due to the decrease of the electron reacceleration in smaller galaxy clusters. We expect a total number of GRHs to be discovered at ~mJy radio fluxes of ~100 at 1.4 GHz. Finally, the occurrence of GRHs and their number counts at 150 MHz are estimated in view of the fortcoming operation of low frequency observatories (LOFAR, LWA) and compared with those at higher radio frequencies.Comment: 21 pages, 17 figures, accepted for publication in MNRA

    On the radio -- X-ray luminosity correlation of radio halos at low radio frequency - Application of the turbulent re-acceleration model

    Full text link
    In this paper we show expectations on the radio--X-ray luminosity correlation of radio halos at 120 MHz. According to the "turbulent re-acceleration scenario", low frequency observations are expected to detect a new population of radio halos that, due to their ultra-steep spectra, are missed by present observations at ~ GHz frequencies. These radio halos should also be less luminous than presently observed halos hosted in clusters with the same X-ray luminosity. Making use of Monte Carlo procedures, we show that the presence of these ultra-steep spectrum halos at 120 MHz causes a steepening and a broadening of the correlation between the synchrotron power and the cluster X-ray luminosity with respect to that observed at 1.4 GHz. We investigate the role of future low frequency radio surveys, and find that the upcoming LOFAR surveys will be able to test these expectations.Comment: e.g.: 8 pages, 7 figures, accepted for publication in A&

    A giant radio halo in the massive and merging cluster Abell 1351

    Full text link
    We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A1351 (z=0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology, and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A1351 to be a system undergoing a major merger. The halo is associated with the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high-energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A1351 in the logP1.4GHz_{1.4 GHz} - logLX_{X} plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive (>1015M>10^{15} M_{\odot}) clusters and the presence of giant radio halos.Comment: 4 pages, 3 figures, proof corrections include

    The Extended GMRT Radio Halo Survey I: New upper limits on radio halos and mini-halos

    Full text link
    A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS)- an extension of the GMRT Radio Halo Survey (GRHS, Venturi et al. 2007, 2008). It is a systematic radio survey of galaxy clusters selected from the REFLEX and eBCS X-ray catalogs . Analysis of GMRT data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented. We report the detection of a newly discovered mini-halo in the cluster RXJ1532.9+3021 at 610 MHz. A small scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission, not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RXJ0439.0+0715) are reported. Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that ~23% of the clusters host radio halos. The radio halo fraction rises to ~31%, when only the clusters with X-ray luminosities >8x10^44 erg/s are considered. Mini-halos are found in ~50 % of cool-core clusters. A qualitative examination of the X-ray images of the clusters with no diffuse radio emission indicates that a majority of these clusters do not show extreme dynamical disturbances and supports the idea that mergers play an important role in the generation of radio halos/relics.Comment: 21 pages, 18 figures, 3 tables, accepted for publication in A&

    On the occurrence of Radio Halos in galaxy clusters - Insight from a mass-selected sample

    Get PDF
    Giant radio halos (RH) are diffuse Mpc-scale synchrotron sources detected in a fraction of massive and merging galaxy clusters. An unbiased study of the statistical properties of RHs is crucial to constrain their origin and evolution. We aim at investigating the occurrence of RHs and its dependence on the cluster mass in a SZ-selected sample of galaxy clusters, which is as close as possible to be a mass-selected sample. Moreover, we analyse the connection between RHs and merging clusters. We select from the Planck SZ catalogue (Planck Collaboration XXIX 2014) clusters with M6×1014MM\geq 6\times10^{14} M_\odot at z=0.08-0.33 and we search for the presence of RHs using the NVSS for z<0.2 and the GMRT RH survey (GRHS, Venturi et al. 2007, 2008) and its extension (EGRHS, Kale et al. 2013, 2015) for 0.2<z<0.33. We use archival Chandra X-ray data to derive information on the clusters dynamical status. We confirm that RH clusters are merging systems while the majority of clusters without RH are relaxed, thus supporting the idea that mergers play a fundamental role in the generation of RHs. We find evidence for an increase of the fraction of clusters with RHs with the cluster mass and this is in line with expectations derived on the basis of the turbulence re-acceleration scenario. Finally, we discuss the effect of the incompleteness of our sample on this result.Comment: 11 pages, 7 figures, accepted for publication in A&

    The cluster relic source in A521

    Full text link
    We present high sensitivity radio observations of the merging cluster A521, at a mean redsfhit z=0.247. The observations were carried out with the GMRT at 610 MHz and cover a region of \sim1 square degree, with a sensitivity limit of 1σ1\sigma = 35 μ\muJy b1^{-1}. The most relevant result of these observations is the presence of a radio relic at the cluster periphery, at the edge of a region where group infalling into the main cluster is taking place. Thanks to the wealth of information available in the literature in the optical and X-ray bands, a multi--band study of the relic and its surroundings was performed. Our analysis is suggestive of a connection between this source and the complex ongoing merger in the A521 region. The relic might be ``revived' fossil radio plasma through adiabatic compression of the magnetic field or shock re--acceleration due to the merger events. We also briefly discussed the possibility that this source is the result of induced ram pressure stripping of radio lobes associated with the nearby cluster radio galaxy J0454--1016a. Allowing for the large uncertainties due to the small statistics, the number of radio emitting early--type galaxies found in A521 is consistent with the expectations from the standard radio luminosity function for local (z\le0.09) cluster ellipticals.Comment: 30 pages 8 figures, 5 tables, accepted by New Astronom

    New giant radio sources and underluminous radio halos in two galaxy clusters

    Full text link
    The aim of this work is to analyse the radio properties of the massive and dynamical disturbed clusters Abell 1451 and Zwcl 0634.1+4750, especially focusing on the possible presence of diffuse emission. We present new GMRT 320 MHz and JVLA 1.5 GHz observations of these two clusters. We found that both Abell 1451 and Zwcl 0634.1+4750 host a radio halo with a typical spectrum (α11.3\alpha\sim1-1.3). Similarly to a few other cases reported in the recent literature, these radio halos are significantly fainter in radio luminosity with respect to the current radio power-mass correlations and they are smaller than classical giant radio halos. These underluminous sources might contribute to shed light on the complex mechanisms of formation and evolution of radio halos. Furthermore, we detected a candidate radio relic at large distance from the cluster center in Abell 1451 and a peculiar head tail radio galaxy in Zwcl 0634.1+4750, which might be interacting with a shock front.Comment: 15 pages, 13 figures, accepted for publication in A&

    Is the Sunyaev-Zeldovich effect responsible for the observed steepening in the spectrum of the Coma radio halo ?

    Full text link
    The spectrum of the radio halo in the Coma cluster is measured over almost two decades in frequency. The current radio data show a steepening of the spectrum at higher frequencies, which has implications for models of the radio halo origin. There is an on-going debate on the possibility that the observed steepening is not intrinsic to the emitted radiation, but is instead caused by the SZ effect. Recently, the Planck satellite measured the SZ signal and its spatial distribution in the Coma cluster allowing to test this hypothesis. Using the Planck results, we calculated the modification of the radio halo spectrum by the SZ effect in three different ways. With the first two methods we measured the SZ-decrement within the aperture radii used for flux measurements of the halo at the different frequencies. First we adopted the global compilation of data from Thierbach et al. and a reference aperture radius consistent with those used by the various authors. Second we used the available brightness profiles of the halo at different frequencies to derive the spectrum within two fixed apertures, and derived the SZ-decrement using these apertures. As a third method we used the quasi-linear correlation between the y and the radio-halo brightness at 330 MHz discovered by Planck to derive the modification of the radio spectrum by the SZ-decrement in a way that is almost independent of the adopted aperture radius. We found that the spectral modification induced by the SZ-decrement is 4-5 times smaller than that necessary to explain the observed steepening. Consequently a break or cut-off in the spectrum of the emitting electrons is necessary to explain current data. We also show that, if a steepening is absent from the emitted spectrum, future deep observations at 5 GHz with single dishes are expected to measure a halo flux in a 40 arcmin radius that would be 7-8 times higher than currently seen.Comment: 8 pages, 6 figures, accepted in Astronomy and Astrophysics (date of acceptance 19/08/2013

    The Extended GMRT Radio Halo Survey II: Further results and analysis of the full sample

    Get PDF
    The intra-cluster medium contains cosmic rays and magnetic fields that are manifested through the large scale synchrotron sources, termed as radio halos, relics and mini-halos. The Extended Giant Metrewave Radio Telescope (GMRT) Radio Halo Survey (EGRHS) is an extension of the GMRT Radio Halo Survey (GRHS) designed to search for radio halos using GMRT 610/235 MHz observations. The GRHS+EGRHS consists of 64 clusters in the redshift range 0.2 -- 0.4 that have an X-ray luminosity larger than 5x10^44 erg/s in the 0.1 -- 2.4 keV band and with declinations > -31 deg in the REFLEX and eBCS X-ray cluster catalogues. In this second paper in the series, GMRT 610/235 MHz data on the last batch of 11 galaxy clusters and the statistical analysis of the full sample are presented. A new mini-halo in RXJ2129.6+0005 and candidate diffuse sources in Z5247, A2552 and Z1953 are discovered. A unique feature of this survey are the upper limits on the detections of 1 Mpc sized radio halos; 4 new are presented here making a total of 31 in the survey. Of the sample, 58 clusters that have adequately sensitive radio information were used to obtain the most accurate occurrence fractions so far. The occurrence of radio halos in our X-ray selected sample is ~22%, that of mini-halos is 13% and that of relics is ~5%. The radio power - X-ray luminosity diagrams for the radio halos and mini-halos with the detections and upper limits are presented. The morphological estimators namely, centroid shift (w), concentration parameter (c) and power ratios (P_3/P_0) derived from the Chandra X-ray images are used as proxies for the dynamical states of the GRHS+EGRHS clusters. The clusters with radio halos and mini-halos occupy distinct quadrants in the c-w, c-P_3/P_0 and w - P_3/P_0 planes, corresponding to the more and less morphological disturbance, respectively. The non-detections span both the quadrants.Comment: 24 pages, 5 tables, 25 figures, accepted for publication in A&
    corecore