279 research outputs found

    Data-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion

    Get PDF
    Two main problems are studied in this article. The first one is the use of the extrusion process for controlled thermo-mechanical degradation of polyethylene for recycling applications. The second is the data-based modelling of such reactive extrusion processes. Polyethylenes (high density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE)) were extruded in a corotating twin-screw extruder under high temperatures (350 °C < T < 420 °C) for various process conditions (flow rate and screw rotation speed). These process conditions involved a decrease in the molecular weight due to degradation reactions. A numerical method based on the Carreau-Yasuda model was developed to predict the rheological behaviour (variation of the viscosity versus shear rate) from the in-line measurement of the die pressure. The results were successfully compared to the viscosity measured from offline measurement assuming the Cox-Merz law. Weight average molecular weights were estimated from the resulting zero-shear rate viscosity. Furthermore, the linear viscoelastic behaviours (Frequency dependence of the complex shear modulus) were also used to predict the molecular weight distributions of final products by an inverse rheological method. Size exclusion chromatography (SEC) was performed on five samples, and the resulting molecular weight distributions were compared to the values obtained with the two aforementioned techniques. The values of weight average molecular weights were similar for the three techniques. The complete molecular weight distributions obtained by inverse rheology were similar to the SEC ones for extruded HDPE samples, but some inaccuracies were observed for extruded UHMWPE samples. The Ludovic® (SC-Consultants, Saint-Etienne, France) corotating twin-screw extrusion simulation software was used as a classical process simulation. However, as the rheo-kinetic laws of this process were unknown, the software could not predict all the flow characteristics successfully. Finally, machine learning techniques, able to operate in the low-data limit, were tested to build predicting models of the process outputs and material characteristics. Support Vector Machine Regression (SVR) and sparsed Proper Generalized Decomposition (sPGD) techniques were chosen to predict the process outputs successfully. These methods were also applied to material characteristics data, and both were found to be effective in predicting molecular weights. More precisely, the sPGD gave better results than the SVR for the zero-shear viscosity prediction. Stochastic methods were also tested on some of the data and showed promising results

    Application of Machine Learning Tools for the Improvement of Reactive Extrusion Simulation

    Get PDF
    The purpose of this paper is to combine a classical 1D twin-screw extrusion model with machine learning techniques to obtain accurate predictions of a complex system despite few data. Systems involving reactive polyethylene oligomer dispersed in situ in a polypropylene matrix by reactive twin-screw extrusion are studied for this purpose. The twin-screw extrusion simulation software LUDOVIC is used and machine learning techniques dealing with low data limit are used as a correction of the simulation.This research was funded by the French ANR through the DataBEST project

    Rhéologie et Polymérisation

    No full text
    Conférence en universitéInternational audienc

    Microstructure et propriétés : Les TPV vus par un universitaire

    No full text
    Conférence en industrieInternational audienc

    Fundamental aspects in reactive processing

    No full text
    Conférence en industrieInternational audienc

    Melt rheology of organoclay and fumed silica nanocomposites

    Get PDF
    International audienceThe objective of the present work is to investigate, from the open literature, the recent developments in the rheology of silica and organoclay nanocomposites. In particular, this paper focuses on general trends of the linear viscoelastic behaviour of such nanocomposites. Hence, the variations of the equilibrium shear modulus and critical strain (limit of linearity), which depend on power laws of the volume fraction of particles, are discussed as filler fractal structure. In the third section, the strong nonlinearity behaviour (Payne effect) of filled polymers has been discussed in terms of filler nature. Typically two mechanisms arise to depict the linear solid-like behaviour and the Payne effect: particle-particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle-polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. However, these interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Finally, we aim to unify the main findings of the literature on this subject, at least from a qualitative point of view. We finally report on the thixotropy and modulus recovery after a large deformation in steady and dynamic shear conditions. Following this, the nonlinear rheological properties of nanocomposite materials have been discussed. The discussion is particularly focused on the effect of flow history (transient shear experiments) on the orientation-disorientation of clay platelets. Actually, the linear and nonlinear rheological properties are consistent with a network structure of a weakly agglomerated tactoids. As far as exfoliated clay nanocomposites are concerned, the inter-particle interaction is the dominant effect in the nonlinearity effect

    Dynamique moleculaire : mecanisme de renouvellement du tube, comportement rheologique des polymeres polymoleculaires

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    • …
    corecore