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Abstract: Two main problems are studied in this article. The first one is the use of the extrusion
process for controlled thermo-mechanical degradation of polyethylene for recycling applications.
The second is the data-based modelling of such reactive extrusion processes. Polyethylenes (high
density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE)) were
extruded in a corotating twin-screw extruder under high temperatures (350 ◦C < T < 420 ◦C) for
various process conditions (flow rate and screw rotation speed). These process conditions involved a
decrease in the molecular weight due to degradation reactions. A numerical method based on the
Carreau-Yasuda model was developed to predict the rheological behaviour (variation of the viscosity
versus shear rate) from the in-line measurement of the die pressure. The results were successfully
compared to the viscosity measured from offline measurement assuming the Cox-Merz law. Weight
average molecular weights were estimated from the resulting zero-shear rate viscosity. Furthermore,
the linear viscoelastic behaviours (Frequency dependence of the complex shear modulus) were
also used to predict the molecular weight distributions of final products by an inverse rheological
method. Size exclusion chromatography (SEC) was performed on five samples, and the resulting
molecular weight distributions were compared to the values obtained with the two aforementioned
techniques. The values of weight average molecular weights were similar for the three techniques.
The complete molecular weight distributions obtained by inverse rheology were similar to the SEC
ones for extruded HDPE samples, but some inaccuracies were observed for extruded UHMWPE
samples. The Ludovic® (SC-Consultants, Saint-Etienne, France) corotating twin-screw extrusion
simulation software was used as a classical process simulation. However, as the rheo-kinetic laws of
this process were unknown, the software could not predict all the flow characteristics successfully.
Finally, machine learning techniques, able to operate in the low-data limit, were tested to build
predicting models of the process outputs and material characteristics. Support Vector Machine
Regression (SVR) and sparsed Proper Generalized Decomposition (sPGD) techniques were chosen to
predict the process outputs successfully. These methods were also applied to material characteristics
data, and both were found to be effective in predicting molecular weights. More precisely, the sPGD
gave better results than the SVR for the zero-shear viscosity prediction. Stochastic methods were also
tested on some of the data and showed promising results.

Keywords: polyethylene recycling; artificial engineering; polymer extrusion; machine learning

1. Introduction

Considering the current situation of plastic consumption worldwide, the issue of end-
of-life of polymer materials has become a significant problem. Polyethylene (PE) accounts
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for most plastic packaging and, consequently, plastic waste [1]. As PE is a thermoplastic, the
most common method for its recycling is mechanical recycling, which involves reprocessing
the materials [2–4]. These processes can induce the formation of radicals by homolytic
cleavage of the polymers, inducing degradation, branching or even crosslinking of the
materials leading to different final properties [5–9]. Consequently, to these properties
changes, the applications of the mechanically recycled polymers have to be adapted [10–12].
Whereas the majority of recycled high and low-density polyethylenes (HDPE and LDPE)
are however produced that way, Ultra High Molecular Weight Polyethylenes (UHMWPE),
mostly used for high-performance applications due to their superior mechanical properties,
are more difficult or impossible to process due to their high viscosity [13]. The other
principal way of recycling polymers is by chemical recycling, which consists of a chemical
transformation leading to new raw materials. Whereas polyethylene terephthalate (PET)
can be depolymerized into dimethyl terephthalate and ethylene glycol by mathanolysis [14],
no such reactions are possible for PE. The main way of PE chemical recycling is then
pyrolysis, leading to smaller carbonated molecules, which can, in theory, be reinjected into
the chemical industry [2,6,15–21].

Whilst thermal degradation of polymers that include heteroatoms in their structure
(PMMA, for instance) leads to simple products and mechanisms, PE degradation is more
complex [22]. A simplification of PE degradation mechanisms is presented in Figure 1.
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Figure 1. Simplified mechanisms of thermal degradation of polyethylene [23,24].
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As shown in this figure, different degradation mechanisms are possible for PE thermal
degradation. The process conditions then define their probability. Whereas for polymers
with a more complex structure, the end-chain scission mechanism would be preponderant,
in the case of polyolefins, random scissions are more significant [24]. Therefore, the higher
the molecular weight of the polyolefin, the more random scissions occur, resulting in a
narrowing of the molecular weight distribution [25]. As schematized in Figure 2, the molec-
ular weight decreases with the increase of the temperature of the reaction, leading first to
oligomers and then to smaller molecules whose nature depends on propagation and termi-
nation mechanisms. A short reaction time at high temperatures would favour β-scissions,
leading to the formation of a certain yield of the ethylene monomer. However, longer
reaction times tend to favour the production of cyclic compounds due to intramolecular
and intermolecular transfers, which are less easy to valorize afterwards [25].
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Figure 2. Representation of the different products of polyethylene degradation depending on temper-
ature and residence time, inspired from Vollmer et al. [25].

The final products are then highly dependent on the processing conditions. Moreover,
classic pyrolysis processes induce heat and mass transfer problems, leading to highly
heterogeneous products without the possibility of controlling the degradation [25].

Other innovative ways of PE recycling were recently studied. Manas et al. [26,27], for
instance, studied the recycling of PE crosslinked by irradiations by using it as a filler for
virgin LDPE, Elmanowich et al. [28] studied the use of supercritical fluids for PE recycling,
and recent promising studies are about the enzymatic degradation of polymers [29,30].

The present work aims at controlling the thermo-mechanical degradation of PE by car-
rying out a twin-screw extrusion process at high temperatures (320 < T ◦C < 420). Whereas
polyethylene extrusion usually leads to branching and crosslinking, the extrusion thermal
conditions in this work favour degradation mechanisms closer to pyrolysis conditions.

With the question of the process control comes the issue of its simulation. Extrusion
simulation has been widely studied in the last decades. However, the complexity of the
physical phenomena involved in the extrusion process involves either a long time and a
significant computing power or a lot of hypotheses and simplifications. Furthermore, in this
study, the viscoelastic properties of the materials evolve with their degradation. Due to the
temperatures reached in the extruder, the materials are at the limit of pyrolysis. Moreover,
the presence of oxygen involves additional chemical reactions due to high-temperature
oxidation. Thus, the complexity of the degradation mechanisms increases the imprecision
of the simulation.

On the other hand, machine learning does not need to understand these complex
physics, only to have accurate experimental data to predict the results of new experiments.
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This approach often leads to faster computing and sometimes to more precise results, the
imprecision coming from unknown phenomena or simplifications unavoidable in classical
simulations that are not necessary with machine learning. Such methodologies were
successfully employed in previous works on various reactive extrusion systems [31,32].

The following is a study of the degradation of HDPE and UHMWPE by twin-screw
extrusion at high temperatures. Then, several methods will be applied and compared to
determine the extruded polyethylenes’ final viscosities and molecular weights. Finally,
the modelling of this process with the twin-screw extrusion Ludovic® simulation software
(SC-Consultants, Saint-Etienne, France) will be compared to the results obtained with
Machine-Learning methodologies.

2. Experimental Section
2.1. Materials and Extrusion

HDPE (HDPE XRT70, TOTAL, Melt Flow Index (MFI: 190 ◦C/5 kg) = 0.7 g/10 min) and
UHMWPE (GUR 4130, Celanese, Melt Flow Index (MFI: 190 ◦C/21.6 kg) < 0.1 g/10 min)
were extruded in an intermeshing corotating twin-screw extruder ZSE 18 MAXX/HPe
(Leistritz, Nuremberg, Germany) for various temperatures, screw rotation speeds and
exit flow rates, reaching 29 different configurations. These processing conditions are
summarized in Table 1.

Table 1. Processing conditions used in this study.

Materials Tmax * Flow Rate Screw Rotation Speed

HDPE XRT70 TOTAL,
(MFI = 0.7 g/10 min (190 ◦C, 5 kg))

350 ◦C
390 ◦C
420 ◦C

1 to 6 kg/h 300 to 1000 rpm

UHMWPE GUR 4130, Celanese,
(MFI < 0.1 g/10 min (190 ◦C, 21.6 kg))

390 ◦C
420 ◦C 1 and 3 kg/h 300 to 1000 rpm

* Tmax correspond to the maximal setpoint temperature cf. Figure 3.

As the Polyethylene samples are highly viscous, and in order to have a maximum
of possibilities concerning flow rate and rotation speed combinations, the screw profile
was designed with quite a low shear and few restrictive elements. The temperature was
increased progressively along with the barrel blocks and progressively decreased before
the die for security issues and to limit the degradation at the die exit. The polyethylenes
were introduced at the extruder entrance with a gravimetric feeder. The die had a 3 mm
diameter. At the exit, the materials were cooled by air and then pelletized. The extruder
configuration is described in Figure 3.
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The details about the different extrusion configurations tested and the in-line measures
are presented in the Appendix A of this article, in Table A1.
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The torque, the Engine Power and the die pressure were measured for each experiment.
Thermocouples placed around the centre of the extruder (Tc at L = 38D) and in the die
permitted to measure the melt temperature. However, it appears that the temperature
measured is the one of the inner surface of the barrel and not precisely the bulk material
temperature. Therefore, a manual thermocouple was used to measure it at the die exit of
the extruder.

2.2. Characterizations

The rheological behaviour of the extruded and raw materials was studied using a
DHR-2 (TA Instruments, New Castle, DE, USA), a stress-controlled rheometer. Frequency
sweeps have been carried out at 190 ◦C from 100 to 0.01 rad·s−1 under nitrogen and with
1% deformation. The geometry used was 25 mm diameter parallel plates with a 1 mm gap.

The molecular weight distributions of five samples (two degraded HDPE, two de-
graded UHMWPE and raw HDPE XRT70) were measured using high-temperature steric ex-
clusion chromatography (HT-SEC) using a Viscositek (Malvern Panalytical Ltd., Malvern, UK)
device. The samples were previously dissolved in toluene at 100 ◦C for 30 min.

2.3. Theoretical Methodologies
2.3.1. Determination of Mw from Viscoelastic Behaviour

The molecular weight distributions have been calculated using the TA instrument
tool implemented in the Trios software (TA Instruments, New Castle, DE, USA). This tool,
based on the double reptation theories [33,34], uses a model linking the molecular weight
distribution to the relaxation modulus via the following relationship:

G(t) = G0
N ·

 ∞∫
ln (Me)

F
1
β w(M)dln(M)


β

(1)

where G(t) is the linear viscoelastic relaxation modulus, G0
N is the plateau modulus, w(M)

is the molecular weight distribution, F(M, t) is the monodisperse relaxation function, and
β takes the value 1 for simple reptation and 2 for double reptation. Several models exist to
define the F function. In this study, as in most cases, a single exponential form described by
Equation (2) is applied. Table 2 presents the definition of the constants used by the model
and their values in this work, which correspond to classical values for polyethylene.

F
1
2 (M, t) = exp

(
−t

2λ(M)

)
with λ(M) = Kλ(T)Mα;

Kλ(T) = Kλ(T0) exp
(

Ea
RT

) (2)

Table 2. Parameters used for the molecular weight distribution calculation from inverse
rheology method.

Symbol Parameter Value

T Test Temperature 190 ◦C
α Relaxation time exponent 3.6

G0
N Plateau modulus 2.3 × 106 Pa

Ea Activation Energy 30 kJ/mol
Kλ Front Factor 2.5 × 10−21 s·(mol/g)3.6

Me Entanglement Molecular
weight 1250 g/mol

Mr Reptation Molecular weight 2500 g/mol
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2.3.2. Determination of Mw from Measured Die Pressure

As the pressure measured at the extruder die depends on the viscosity of the viscous
polymer, which can be related to the molecular weight, it is then possible to estimate
the viscosity and subsequently the molecular weight without the need for post-process
characterizations. Figure 4 summarises the different steps required to measure Mw from
the die pressure measurement.
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The first step is to determine the value of the viscosity and the shear rate in the die.
For this purpose, the die is considered a capillary rheometer. The experimentally measured
temperatures and pressures are then approximated to those of the narrowest section of
the die. As in a capillary rheometer, an apparent shear rate

.
γapp and an apparent viscosity

ηapp are calculated as a function of the flow rate Q, the die cross-section and length r and L
and the difference between die and outside drop pressure ∆P according to Equation (3).

.
γapp =

4 Q
π r3 ; ηapp =

∆P r
2 L

.
γapp

(3)

These values are valid at the temperature of the die Tdie, it is then necessary to calculate
them at a reference temperature T0 which is set at 190 ◦C in this study. This correction is
then done assuming an Arrhenius dependence of the viscosity (Equation (4)).

ηapp(Tdie) = aT × ηapp(T0) ; aT = exp
(

Ea

R
×
(

1
T0
− 1

Tdie

))
(4)

Ea = activation energy;
R = ideal gases constant.

Then, the Rabinowitsch correction (Equation (5)) has to be applied to calculate real
shear rate and viscosity

.
γdie and ηdie.

.
γdie =

3m+1
4m

.
γapp ; ηdie =

4m
3m+1 ηapp ;

with m− 1 =
∂ log(η)
∂ log(

.
γ)

(5)

Usually, the parameter m is obtained by measuring several values of
.
γapp and ηapp and

calculating the slope of the resulting line by plotting log(ηapp) = f (log(
.
γapp)). However,

in the present study, it is impossible to obtain more than one point of the curve because
measuring another pressure value means changing the process and thus changing the
material itself. A first regression is then performed considering a Carreau-Yasuda model
(Equation (6)) passing through this single point; it is thus considered that all degraded
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PE still follow a Carreau-Yasuda law. m and a parameters are set as the ones of the raw
HDPE XRT70 (m = 0.058 and a = 0.248). They have been determined by a frequency sweep
with the rheometer and a fitting with the Carreau-Yasuda model. The Cox-Merz law was
assumed to compare the actual shear viscosity and the complex viscosity measured by
oscillatory rheometry tests. According to the literature [35], the viscosity at high shear rates
does not depend on molecular weight. The viscosity curves of different molecular weight
polyethylene samples converge then on an identical power-law behaviour. Making this
assumption, λ and η0 have been determined for each sample through classical regression
methods, and the equation is thus completely described.

η
( .
γ, T

)
= η0 ·(1 +

(
λ× .

γ
)a
)m−1

a (6)

m and a = dimensionless indexes;
λ [s] = characteristic time;
η0 [Pa·s] = zero shear viscosity.

The m parameter can then be calculated with the resulting curve, which enables the
calculation of real shear rate

.
γdie and viscosity ηdie in the die thanks to Rabinowitsch

correction. Finally, the real viscosity curve passing through this point is estimated by a
second regression with a Carreau-Yasuda model in the same way as the first regression.

It is then possible to link the average molecular weight Mw to η0 considering Equation (7).
Often estimated at 3.4 for entangled polymers, the α exponent has been fixed at 3.6 in this
study to be homogeneous with previous calculations and other HDPE studies [36–38] (the
results being similar with the two values). The K constant can be determined from the
values of η0 and Mw of the reference HDPE.

η0 = K×Mα
w (7)

3. Modelling and Machine Learning
3.1. Simulation

Ludovic® software (SC-Consultants, Saint-Etienne, France) is a well-known twin-screw
extrusion simulation software. Due to its computing speed, ease of use and flexibility, it has
proven its reliability in many different fields and applications. Initially developed for starch
extrusion, it is now developed and used for plastics compounding and the pharmaceutical,
cosmetics, food, and construction industries. This broad use makes it an interesting choice
for this study and for comparison with new approaches such as machine learning.

Its efficiency is due to many simplifications and hypotheses and its adaptability to
each situation. First, the melting process is considered instantaneous, but the user can also
implement a melting model. Then, specific geometries are used depending on the element,
allowing the flow calculation in only one dimension. Elements are divided into several
sections in which the fluid is considered as Newtonian and isothermal. Specific viscosities
depending on shear rate and temperature are however defined and chosen by the user.
Dedicated articles were published for a complete description of the method [39].

Here, the software was configured to match screw profile, extruder, die and tem-
perature profile with the experiments. Transfer coefficients were fixed at 50 W·m−2·K−2

for the die and 350 W·m−2·K−2 for the barrel, corresponding to similar and previous
simulations [31,40].

Concerning the viscosity of the polyethylene, several options are available: Choosing a
rheological model between Power Law and Carreau-Yasuda and indicating the correspond-
ing parameters, implementing a new model, or entering a set of points (SoP) corresponding
to rheological measurements. It is also possible to couple the viscosity with some simu-
lation results, such as reaction rate (requires entering a description of the kinetics), total
residence time, cumulated strain or total dissipated energy. Nevertheless, it requires
knowing the relation between these parameters and viscosity. In our case, polyethylene
viscosity evolves during the extrusion due to the degradation under high temperature.
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Berzin et al. [41] developed a method for coupling the starch viscosity variation with the
SME on Ludovic® (SC-Consultants, Saint-Etienne, France) However, here, the dependence
between degradation and the process parameters is unknown, and the objective is to use
the simulation classically.

HDPE viscosity has been defined as following a Carreau-Yasuda model, in which pa-
rameters have been determined from rheological measurements on the raw polyethylenes.

Concerning UHMWPE, it appears that the available rheological measurement methods
underestimate the viscosity. Several hypotheses and simplifications had then to be made in
order to approximate it for our simulation.

As a first simplification, the elastic modulus (G′) has been considered as constant and
equal to its rubbery plateau value G0

N , which can be calculated the following way:

G0
N =

ρR T
Me

(8)

where ρ is the density of the polymer estimated at 930 kg/m3 according to the supplier,
R is the perfect gas constant, T is the reference temperature (T = 190 ◦C) and Me is the
molecular weight between entanglements (1.25 kg/mol for polyethylene).

Then, as the loss modulus is significantly lower than the value of the elastic modulus,
its contribution to viscosity calculation has been neglected.

Finally, the Cox-Merz hypothesis has been made, allowing to assimilate the actual
viscosity η and shear rates

.
γ of the extruder to the complex viscosity η∗ and angular

frequency ω, thus obtaining the following approximation:

η
( .
γ
)
= η∗(ω) =

G′(ω)

ω
=

G0
N

ω
(9)

All the polymer characteristics used have been summarised in Table 3.

Table 3. Thermal Properties and viscosity laws used in the simulation.

Thermal Properties HDPE XRT70 UHMWPE GUR 4130

Heat Capacity [J kg−1 K−1] 1550 1840
Density [kg m−3] 947 930

Thermal Conductivity [W mK−1] 0.35 0.41
Melting Temperature [◦C] 129 135
Melting enthalpy [kJ kg−1] 190 122

Viscosity Law

Carreau-Yasuda: Power Law:

η
( .
γ
)
= η0 ·(1 +

(
λ× .

γ
)a
) m−1

a η
( .
γ
)
= K

.
γ m−1

η0 = 2.5 × 106 Pa·s
λ = 0.33 s
a = 0.25

m = 0.058
Tref = 190 ◦C

Ea = 30 kJ·mol−1

m = 0
K = 2.86 × 106 Pa·s

Tref = 190 ◦C
Ea = 30 kJ·mol−1

3.2. Machine-Learning

Since a data-driven model is only fed by data, the more data there is, the more accurate
the prediction will be. While today, in the era of “big data”, one of the main concerns is to
classify this huge amount of data successfully, this study is in the opposite situation dealing
with the low data limit imposed by the number of extrusions and the available hardware.
The dataset used in our study includes four types of inputs (HDPE or UHMWPE, flow rate,
screw rotation speed and maximal imposed temperature), and only around 27 data, each
corresponding to an extrusion configuration. To find a law linking the outputs to these
inputs, it is consequently necessary to use algorithms able to perform with few data. As
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regression methods are well adapted to this case, Support Vector Machine Regression (SVR)
and Sparsed Proper Generalized Decomposition (sPGD), two regression methods, have
been tested for those data. Their specific modes of operation are described hereafter.

The process is as follows: the dataset is first randomly divided into training and test
groups. Then, the training inputs and outputs are implemented in the algorithm, which,
depending on the method, will “learn” from these data, creating a model linking the inputs
to the outputs. The model is then tested with the remaining data, and the outputs predicted
by it are compared to the real ones, allowing qualifying its accuracy.

3.2.1. Support Vector Machine Regression—SVR

SVR is a derivate of the Support Machine Vector—SVM—classification method. It is
a classical method known for its effectiveness in high dimensional spaces and is widely
described in the literature, such as Smola et al. in 2004 [42]. As with all classification
methods, SVM aims to find the equation of the limit between two classes. As it can be
tricky or impossible to find this limit in the original space of the data, the strategy here is to
represent the data in a higher-dimensional space where the equation of the limit would
be more simple. This principle is represented in Figure 5. This transformation is carried
out via a transformation function called “kernel” (noted ϕ in the figure). This kernel is
defined by the user, depending on the system and its complexity. Here the “RBF” kernel
was chosen as it is adapted to nonlinear systems.
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The decision surface defining the different class areas is defined according to two
parameters C and ε defined by the user. ε represents the maximum error between the
decision surface and the experimental points, and C characterizes the smoothness of this
surface. To be more specific, a high value of C would make the decision surface fit exactly
all the experimental points but can lead to overfitting. It would hardly represent reality
and would not fit new points that are not part of the training points. On the contrary, a low
value of C would smooth the decision surface, enabling more errors and bringing more
realism. This principle can also be used for regression purposes, and this is how the SVR
method used here works. Then, the decision surface does not represent a border between
classes but a hyper-surface approximating the points, predicting numerical values for new
testing points.

3.2.2. Sparsed Proper Generalized Decomposition—sPGD

This regression method has been developed and fully described by Ibáñez et al. [43].
To give an idea of the principle of this method, let us consider an output y that depends on
two input parameters x1 and x2. The simplest regression method, particularly in the case of
few experimental data, is a linear regression such as described by Equation (10).

y(x1, x2) = a + b× x1 + c× x2 (10)

where three experimental data, i.e., values of (y, x1, x2), are necessary to find a, b and c
parameters of Equation (10).
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However, the dependence between the inputs and outputs is often nonlinear, and
calculating richer regressions would necessitate more data. The principle of sPGD is
considering instead of (10) the following equation:

y(x1, x2) = X1(x1)× X2(x2) (11)

The dependence relation between the output y and the inputs x1 and x2 would thus
be a product of functions depending each on x1 and x2. To determine these functions
without needing more data, the following method is applied. First, X1(x1) is fixed and
X2(x2) is estimated thanks to the available data. Only two data are then necessary to
have a linear function in each coordinate and then a bilinear regression with only three
data (some regularisation being needed to avoid unphysical behaviours). However, a
more significant amount of data would lead to richer approximations. Then, X1(x1) can
be estimated by fixing X2(x2) to its just calculated value using the same data. With this
method, three experimental data could lead to a quadratic dependence instead of a linear
one with Equation (10).

3.2.3. Stochastic Methods

Classically, the way of estimating the equation matching a maximum with data is to
apply the classical least-squares procedure. However, another method called “stochastic”
based on statistics is possible.

Let consider a set of two variables xi and yi that we attempt to describe by a linear func-
tion yi = yi(xi) = axi + b. The classical lest squares procedure consists of minimizing S.

S =
1
2 ∑

i
(yi − f (xi))

2 =
1
2 ∑

i
(yi − (axi + b))2 (12)

The number of samples is n (i = 1..n).
The linear regression applied at each data point reads:

b + ax1 = y1
. . .

b + axn = yn

(13)

whose matric form reads  x1 1
. . . . . .
xn 1

( a
b

)
=

 y1
. . .
yn

 (14)

or using a more compact form

X
(

a
b

)
= Y (15)

The least-squares procedure used for solving the just overdetermined system consists
of pre-multiplying the previous system by XT that results in

XTX
(

a
b

)
= XTY (16)

or more explicitly  ∑
i

x2
i ∑

i
xi

∑
i

xi n

( a
b

)
=

 ∑
i

xiyi

∑
i

yi

 (17)
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It is then possible to prove that the solution of this system results

a = Cov(x,y)
Var(x)

b = y− ax
(18)

with y and x the mean value in the sample of variables y and x, respectively.
We suppose now that for each input xi the response yi follow a Gaussian distribution

with a standard deviation σi. Let denotes by Nσ(.) the Gaussian distribution around the
zero value with standard deviation σ. The least-squares procedure previously described is
here modified. The idea consists in saying that each yi must follow a normal distribution
centred at axi + b and with a standard deviation σi.

The optimization problem results then in the maximization of the following sum

S =
1
2 ∑

i
Nσi (yi − f (xi)) =

1
2 ∑

i
Nσi (yi − (axi + b)) (19)

To get back on a classical optimization problem expressed in terms of minimization, we
just have to add a negative sign on the sum. The resolution cannot be made analytically, as
was done in the case of the least-squares’ procedure. We can however use a descent scheme.

Assuming that the standard deviation does not depend on x, one could look for the sta-
tistical regression with a minimum standard deviation. For that, the most straightforward
procedure consists of, for a tentative a and b coefficients of the regression, compute the stan-
dard deviation of the sampling, and then apply the previous rationale for computing the
regression, that is, for updating a and b coefficients and iterate until reaching convergence.

The procedure described above is easily generalized to handle multiparametric regres-
sions with richer nonlinear regressions. This method was tried on 10 data corresponding
only to HDPE extruded at 190 ◦C and coupled to SVR previously described methodology.

4. Results and Discussion
4.1. Comparison of Estimated and Measured Viscosities

The viscosities of the extruded materials deduced from the pressure measured at the
die were compared to the rheometer measurements. The viscosity curves obtained from
die pressure measurements are compared to data calculated from rheometer experiments
in Figure 6A only for the samples resulting from HDPE 390 ◦C extrusion. Figure 6B
compares the zero shear viscosities obtained for all samples with the two different methods.
A Carreau-Yasuda model was thus used to fit the experimental viscosity curves, which
validate the use of such a model for the degraded PE. With this type of representation, the
closer the points on the x = y line are, the closer the values of the two methods for the same
sample are. The samples from extrusions performed at different temperatures or with the
UHMWPE give similar results. The results are fully detailed in Table A3 of the Appendix A.

Despite the assumptions made, the estimated viscosity curves are close to the rheome-
ter experiments. However, the region of the Newtonian plateau at low frequency seems to
be more pronounced for the rheometer data, leading to a higher value of the parameter a of
the Carreau-Yasuda law. But the interest of this method is to avoid offline characterizations.
Given the lack of information to model the curve correctly, it seems unlikely that better
results can be obtained. Besides, the comparison of zero-shear viscosities gives satisfac-
tory results and proves that this method can rapidly approximate the final viscosity of
extruded materials.

4.2. Molecular Weight Distribution

Figure 7A shows the comparison of the values of weight average molecular mass
(Mw) obtained with the three methods previously described, i.e., (i) viscoelastic behaviour
measurements, (ii) from die pressure and (iii) from size exclusion chromatography (SEC).
Only the five samples analyzed by SEC are in the 3D figure, the other ones being in the
die pressure versus viscoelastic behaviour plane. Figure 7B compares Mw values obtained
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by the three techniques and Mn values obtained by SEC and viscoelastic measurements.
The results are fully detailed in Table A3 of the Appendix A. It appears that despite the
simplifications they induce, the three methodologies give similar results for the determi-
nation of Mw for all samples, with a factor of less than 2 between values in most cases.
Thus, it appears that, concerning the determination of Mw, the viscoelastic measurement
method has few advantages over the die pressure method, which does not require offline
characterizations. However, its advantages actually lie in the fact that this technique allows
obtaining the complete distribution of molecular weights, unlike the die pressure method,
which only allows obtaining the Mw.
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obtained from the estimated zero shear rate viscosity versus the one obtained from viscoelastic
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molecular weight values obtained with different specified methodologies.
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The Mn values obtained are compared to SEC values in Figure 7B. Figure 8 compares
complete molecular weight distributions obtained by SEC and calculated from viscoelastic
measurements for an HDPE and a UHMWPE. These figures point out that concerning
HDPE samples, the distributions calculated are close to the ones obtained by SEC, which
is the more precise methodology. It is consequently possible for this type of sample to
determine the molecular weight distribution only from frequency sweep experiments,
avoiding using SEC, which is a more complex and less accessible process involving the use
of hot CMR solvents. However, for UHMWPE samples, Mn values are not as close to the
SEC values. It can be due to structural differences with HDPE samples, inducing different
parameters for the reptation model (relaxation time exponent, entanglement and reptation
molecular weights, etc.).
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4.3. Ludovic® Simulation

Figure 9 compares the values obtained with Ludovic® simulation (x-axis) to the exper-
imental measures (y-axis) for different process parameters. This representation involves
that the closer the values are to the x = y line, the closer the predictions of Ludovic® are to
the measures. These results are fully detailed in Table A2 of the Appendix A.

The die temperatures measured by the extruder thermocouple are all around 200 ◦C,
while the output temperatures measured with a manual thermocouple are much higher
and more scattered. It is often a problem with extruder thermocouples which, being placed
on the walls of the die, are influenced by its temperature and do not measure the actual
melt temperature.

Concerning the simulation results, the first thing to notice is that all temperatures seem
to be overestimated by the software, which matches the fact that polyethylene degradation
is not considered. The actual viscosity decreases along with the screws and causes less
self-heating than what could be expected without degradation. The temperature is, in fact,
closer to the one imposed by the extruder.

This viscosity error also causes an overvaluation of the pressure in the die, more
accentuated for UHMWPE because of its high viscosity. Concerning the torque and the
engine power, and in the case of HDPE, the experimental values match pretty well with the
simulation. It can be surprising considering the error between simulated and experimental
viscosities caused by degradation. However, as viscosity decreases along the extruder, we
can think that the torque value is mainly ruled by the most viscous part, which is the raw
polyethylene present in the first screw elements and not yet degraded. The torque is then
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ruled by the viscosity of raw polyethylene, which is the one implemented in Ludovic®

(SC-Consultants, Saint-Etienne, France) The ability of machine learning algorithms to make
better predictions than classic simulation is studied in what follows.
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Figure 9. Comparison of Ludovic® Simulation versus Experimental data for in-line measured parameters.

4.4. Data-Based Modelling
4.4.1. Modelling of In-Line Measures with Machine-Learning Methods

This part presents the results obtained by Machine-Learning (ML) method on in-line
measured parameters, which correspond to the parameters measured directly during the
extrusion without needing additional experiments.

Figures 10 and 11 show the results obtained for centre and exit temperatures (manual
thermocouple), torque, engine power and exit pressure for SVR and sPGD methods, respec-
tively. To obtain these results, the model obtained after training with SVR regression has
been applied on inputs and these figures represent the resulting outputs compared with
the measured ones. Blue dots correspond to the data used for training and constructing the
model, whereas the red star ones represent data that are new for the model as they have
not been used for the training. Regarding these results, it appears that both methodologies
give acceptable results as the dots are well distributed along the x = y line and relatively
close to it.
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In order to have more precise comparison tools, R2 scores were calculated on the
results and presented in Table 4. The closer the score is to 1, the closer the model is to
measures. Whereas obtaining a good score for training data is accessible, obtaining it for
both training and test data is trickier. This table shows that both methods give acceptable
errors but that the sPGD can be more precise for most parameters, particularly for the die
pressure. On the contrary, exit temperature is a little bit more precisely modelled with SVR.

Table 4. R2 scores errors for SVR and sPGD methods.

R2 Error
Centre

Temperature
Exit

Temperature Torque Engine
Power Die Pressure

SVR train 0.93 0.93 0.91 0.93 0.92
SVR global 0.92 0.88 0.8 0.92 0.75
sPGD train 0.99 0.91 0.82 1 0.98

sPGD global 0.99 0.88 0.71 0.99 0.84

Finally, either of these methods gives better results than the classical Ludovic® (SC-
Consultants, Saint-Etienne, France) software model and good predictions without the need
to understand the physical phenomena involved in the extrusion process. However, if this
last point appears to be an advantage in favour of this method, it should be noted that one
should be wary of it because the algorithm can model data that are false in the absolute.
For example, the measured exit and centre temperature are very probably underestimated.
Both algorithms, however, succeed to predict them, which proves that there is a logic
between input parameters and these values. Nevertheless, they do not prevent eventual
systematic errors in the measurements.

4.4.2. Modelling of Viscosity and Molecular Weight

One of the main interesting aspects of data-based simulations is that there is no need
to understand the physics behind the measurements to obtain predictive models of these
results. Consequently, it is a less time and power-consuming way to obtain predictions for
any measurements, as long as the correct inputs are given. ML methods can also succeed
in predicting values depending on unknown phenomena. However, they work as black
boxes and cannot help to understand these phenomena.

For example, in this work, understanding the degradation mechanisms sufficiently
to predict the final molecular weights of the material seems out of reach. On the contrary,
predicting these values with ML methods seems entirely feasible. Figure 12 presents the
results obtained with SVR and sPGD methods when predicting zero-shear viscosity η0 and
weight and number average molecular weights Mw and Mn. Table 5 presents the R2 scores
obtained, indicating the precision of these methods.

Both methods successfully model Mw values with reasonably high precision, but Mn
values predictions are less accurate. Mw and Mn values implemented in the software
are deduced from the viscoelastic behaviours of the melt samples. It has previously been
shown that this method is more accurate for predicting Mw than Mn. This fact can explain
the significant error noticeable for some of the data. Concerning the viscosity, the results
obtained with the SVR method are pretty bad, and the predicted values seems shifted from
the real ones. The cause of this phenomenon is unclear since the algorithm succeeds to
predict Mw which, as seen previously, can directly be related to viscosity. sPGD algorithm
presents similar R2 scores for viscosity, but less shifted values, which shows that the choice
of the regression method is crucial.
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predicted by SVR and sPGD methods versus the experimental ones. The blue dots correspond to
training data, and the red stars correspond to test data for HDPE and UHMWPE indiscriminately.

Table 5. R2 scores errors for the determination of η0, Mw and Mn with SVR and sPGD methods.

R2 Error η0 Mw Mn

SVR train 0.48 0.91 0.77
SVR global 0.50 0.86 0.70
sPGD train 0.49 0.90 0.77

sPGD global 0.50 0.82 0.75

4.4.3. Stochastic Models

One problem with data-driven models is that their accuracy depends on the accu-
racy of the data, which necessarily includes inaccuracies due to measurement techniques.
Stochastic models allow considering probability curves instead of points as data, thus
smoothing out these inaccuracies and generally simplifying the model. The SVR method
coupled with the stochastic approach was tested on ten data corresponding to HDPE
extruded at Tmax = 390 ◦C. The results are shown in Figure 13.

As there are only two inputs for these data (Screw rotation speed and Flow rate), the
results can be plotted in 3D graphs. The middle surface corresponds to the predictions,
and the translucent ones correspond to the superior and inferior acceptation boundaries.
Despite the limited amount of data, the method gave satisfactory results. Therefore, this
method is promising and needs to be tested with the different polymers and temperatures
as inputs and other outputs such as viscosities or molecular weights to see if the stochastic
approach can make an improvement.
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5. Conclusions

HDPE and UHMWPE were degraded by twin-screw extrusion under different high
temperatures (320 < T ◦C < 420) and for different process conditions (flow rate and screw
rotation speed), leading to numerous different extrusion configurations. Several parameters
were measured for each configuration, creating a dataset with four different inputs, five
outputs, and thirty-eight data.

The shear viscosity curves of the extruded materials were estimated from the measured
die pressure and temperature. Their comparison with frequency sweep measurements
showed that despite the numerous simplifications, the results were accurate. This fact
shows that this method can be used to rapidly obtain an approximation of the final zero-
shear viscosity of extruded materials.
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Two methods were tested to estimate the molecular weight of extruded polyethylene.
One was based on the viscoelastic behaviour of the material, and the other was deduced
from die pressures and temperatures. The results showed that the average molecular
weight Mw values were similar for both methods and similar to those obtained by SEC for
the five samples tested. The method determining Mw only from measured die pressure
and temperature thus seems more advantageous because it does not involve offline charac-
terizations. However, this method is not sufficient to obtain the complete molecular weight
distribution. In contrast, the other method based on viscoelastic measurements determined
the complete molecular weight distribution. The results were good for HDPE but with
some inaccuracies for UHMWPE samples. Although, as with the SEC, it requires offline
characterizations, it is faster and is an interesting alternative.

The Ludovic® (SC-Consultants, Saint-Etienne, France) twin-screw extrusion simu-
lation software was used as a classical model of the extrusion experiments. Since the
degradation mechanisms occurring in the extruder are unknown, the simulation was
performed considering the viscosities of the raw materials, which led to overestimated
pressures and temperatures. Consequently, SVR and sPGD Machine-Learning methods
were applied to the dataset and succeeded in modelling the extrusions’ torque, engine
power, die pressure, and die and centre temperatures. They also gave good results for the
predictions of Mw. Mn has also been successfully predicted but with more inaccuracies,
probably caused by its method of determination. Besides, whereas the SVR method gave
inaccurate results for zero-shear viscosity modelling, sPGD’s results were more acceptable.
Finally, stochastic methods were tested on ten of the data giving promising results.

Machine-Learning seems to be a valuable tool for extrusion simulation as it is possible
to obtain quickly accurate models. However, it is essential to keep in mind that ML methods
cannot be used as predictive tools and also that the accuracy of the results depends on the
accuracy of the data. In perspective, it could be interesting to think about the scale-up of
this process and about how machine-learning could be a helpful tool for this purpose. Few
experiments on a larger scale could then be necessary to adapt the whole model to it.
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Appendix A. Detail of Data’s

Table A1. In-line measurements for the different tested extrusion parameters.

Process Inputs Extrusion in-Line Measurements

PE Type Q
(kg/h)

N
(rpm) Tmax (◦C) Torque

(N·m)
Pe

(Bar)
Tc

(◦C)
Engine Power

(kW)
Te

(◦C)

HDPE 3 300 350 21.3 28 355 1.04 248

HDPE 3 600 350 17.7 22 357 1.68 273

HDPE 6 300 350 13.8 12 353 3.97 236

HDPE 6 600 350 12.4 12 355 6.89 258

HDPE 1 300 390 10.3 7 395 0.46 226
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Table A1. Cont.

Process Inputs Extrusion in-Line Measurements

PE Type Q
(kg/h)

N
(rpm) Tmax (◦C) Torque

(N·m)
Pe

(Bar)
Tc

(◦C)
Engine Power

(kW)
Te

(◦C)

HDPE 3 300 390 16.7 13 395 0.81 242

HDPE 3 300 390 17.4 17 393 0.81 247

HDPE 3 500 390 16.0 15 394 1.23 260

HDPE 3 500 390 16.0 15 394 1.20 261

HDPE 3 600 390 13.8 12 395 1.31 263

HDPE 3 700 390 14.2 14 396 1.59 268

HDPE 3 1000 390 12.4 8 397 2.01 274

HDPE 5 600 390 20.6 18 396 2.01 276

HDPE 6 300 390 28.7 25 391 0.69 273

HDPE 6 600 390 21.3 19 393 1.02 286

HDPE 6 1000 390 17.0 20 396 0.38 307

HDPE 3 300 420 12.4 4 423 0.60 226

HDPE 3 600 420 10.3 3 424 1.00 230

HDPE 6 300 420 24.8 10 421 0.59 257

HDPE 6 600 420 19.2 8 422 1.81 258

UHMWPE 1 300 390 13.1 25 397 0.64 260

UHMWPE 1 600 390 11.4 13 398 1.09 276

UHMWPE 1 1000 390 9.6 9 399 1.38 286

UHMWPE 3 400 390 22.0 35 398 1.41 280

UHMWPE 3 600 390 16.3 30 397 1.74 307

UHMWPE 3 1000 390 14.2 34 397 1.74 307

UHMWPE 3 300 420 21.3 10 424 1.00 234

UHMWPE 3 600 420 11.0 9 430 1.06 256

UHMWPE 3 1000 420 10.3 7 430 1.61 268

Table A2. Ludovic® results obtained for the different tested extrusion parameters.

Process Inputs Ludovic® Simulation

Polymer Q
(kg/h)

N
(rpm)

Tmax
(◦C)

Torque
(N·m)

Te
(◦C)

Tc
(◦C)

Pe
(bar)

Engine Power
(kW)

HDPE 3 300 350 19.0 363 409 49 1.19

HDPE 3 600 350 13.1 491 520 31 1.65

HDPE 6 300 350 30.2 357 390 67 1.90

HDPE 6 600 350 20.3 473 481 45 2.55

HDPE 1 300 390 10.4 376 443 27 0.65

HDPE 3 300 390 18.7 369 426 47 1.18

HDPE 3 500 390 14.6 459 496 34 1.53

HDPE 3 500 390 14.6 459 496 34 1.53
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Table A2. Cont.

Process Inputs Ludovic® Simulation

Polymer Q
(kg/h)

N
(rpm)

Tmax
(◦C)

Torque
(N·m)

Te
(◦C)

Tc
(◦C)

Pe
(bar)

Engine Power
(kW)

HDPE 3 600 390 13.0 499 530 30 1.64

HDPE 3 700 390 12.1 539 568 27 1.78

HDPE 3 800 390 11.4 579 606 24 1.91

HDPE 3 1000 390 6.4 597 356 23 1.33

HDPE 5 600 390 17.9 487 503 40 2.26

HDPE 6 300 390 29.8 363 407 65 1.87

HDPE 6 600 390 20.1 481 491 44 2.53

HDPE 6 800 390 17.2 553 554 36 2.89

HDPE 6 1000 390 14.1 597 520 32 2.95

HDPE 3 300 420 18.5 374 439 47 1.17

HDPE 3 600 420 12.9 505 538 30 1.63

HDPE 6 300 420 29.5 368 419 64 1.85

HDPE 6 600 420 20.0 488 498 43 2.51

UHMWPE 1 300 390 14.8 402 471 127 0.93

UHMWPE 1 600 390 9.0 459 530 83 1.13

UHMWPE 1 1000 390 6.3 510 590 60 1.32

UHMWPE 3 400 390 19.8 444 485 92 1.66

UHMWPE 3 600 390 13.8 486 519 70 1.74

UHMWPE 3 1000 390 9.2 547 577 49 1.92

UHMWPE 3 300 420 25.0 419 477 112 1.57

UHMWPE 3 600 420 13.7 488 527 69 1.72

UHMWPE 3 1000 420 9.1 550 581 48 1.90

Table A3. Viscosities and molecular weights for the different tested extrusion parameters.

Process Inputs Zero Shear-Rate Viscosities Molecular Weights (Inverse
Rheology)

Mw (From
Die Pressure)

Polymer Q
(kg/h) N (rpm) T (◦C) η0 from Die

Pressure (Pa·s)
η0 Rheometer

(Pa·s)
Mw

(g/mol)
Mz

(g/mol)
Mn

(g/mol) Mw (g/mol)

HDPE 3 300 350 2.6 × 104 3.2 × 104 1.1 × 105 5.0 × 105 2.4 × 104 1.1 × 105

HDPE 3 600 350 1.3 × 104 2.1 × 104 9.1 × 104 4.3 × 105 1.9 × 104 8.6 × 104

HDPE 6 300 350 1.1 × 104 3.5 × 104 1.0 × 105 5.2 × 105 1.9 × 104 8.3 × 104

HDPE 6 600 350 1.1 × 104 1.3 × 104 8.4 × 104 3.7 × 105 1.9 × 104 8.2 × 104

HDPE 3 300 390 6.4 × 103 3.2 × 103 6.0 × 104 1.5 × 105 2.4 × 104 7.0 × 104

HDPE 6 300 390 7.4 × 103 3.4 × 103 7.1 × 104 2.2 × 105 2.3 × 104 7.3 × 104

HDPE 6 600 390 4.0 × 103 2.5 × 103 6.4 × 104 2.0 × 105 2.0 × 104 6.1 × 104

HDPE 6 1000 390 1.4 × 103 1.2 × 103 5.4 × 104 1.5 × 105 1.9 × 104 4.5 × 104

HDPE 3 300 420 3.5 × 102 9.0 × 101 2.8 × 104 5.9 × 104 1.3 × 104 3.0 × 104

HDPE 3 600 420 2.2 × 102 1.0 × 102 2.9 × 104 5.9 × 104 1.4 × 104 2.6 × 104

HDPE 6 300 420 8.1 × 102 3.5 × 102 4.1 × 104 9.3 × 104 1.8 × 104 3.8 × 104

HDPE 6 600 420 5.2 × 102 3.1 × 102 3.9 × 104 8.7 × 104 1.8 × 104 3.4 × 104
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Table A3. Cont.

Process Inputs Zero Shear-Rate Viscosities Molecular Weights (Inverse
Rheology)

Mw (From
Die Pressure)

Polymer Q
(kg/h) N (rpm) T (◦C) η0 from Die

Pressure (Pa·s)
η0 Rheometer

(Pa·s)
Mw

(g/mol)
Mz

(g/mol)
Mn

(g/mol) Mw (g/mol)

UHMWPE 1 300 390 7.4 × 104 5.0 × 104 1.2 × 105 1.4 × 106 9.6 × 103 1.4 × 105

UHMWPE 1 600 390 1.3 × 104 5.4 × 104 1.1 × 105 8.8 × 105 1.3 × 104 8.6 × 104

UHMWPE 1 1000 390 5.8 × 103 1.0 × 104 6.6 × 104 3.5 × 105 1.2 × 104 6.8 × 104

UHMWPE 3 400 390 5.3 × 104 7.0 × 103 1.6 × 105 1.5 × 106 1.6 × 104 1.3 × 105

UHMWPE 3 600 390 3.1 × 104 1.0 × 105 1.6 × 105 3.4 × 106 5.8 × 103 1.1 × 105

UHMWPE 3 1000 390 4.8 × 104 2.9 × 104 1.2 × 105 8.7 × 105 1.5 × 104 1.3 × 105

UHMWPE 3 300 420 1.9 × 103 3.1 × 103 6.3 × 104 2.4 × 105 1.6 × 104 4.9 × 104

UHMWPE 3 600 420 1.5 × 103 4.2 × 103 6.8 × 104 2.6 × 105 1.8 × 104 4.6 × 104

UHMWPE 3 1000 420 9.4 × 102 1.9 × 103 5.8 × 104 2.0 × 105 1.7 × 104 4.6 × 104
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