255 research outputs found

    In vitro evaluation on HeLa cells of protective mechanisms of probiotic lactobacilli against Candida clinical isolates

    No full text
    Aims: To characterize in vitro the ability of human Lactobacillus strains to inhibit the adhesion, to displace and to compete with clinically isolated Candida strains. Methods and Results: Three types of assays were performed to determine the inhibitory effect of Lactobacillus plantarum 319, Lactobacillus rhamnosus IMC 501, Lactobacillus paracasei IMC 502 and a specific probiotic combination (SYNBIO) on adhesion of Candida pathogens to HeLa cells: blockage by exclusion (lactobacilli and HeLa followed by pathogens), competition (lactobacilli, HeLa and pathogens together) and displacement (pathogens and HeLa followed by the addition of lactobacilli). Bacterial adhesion to HeLa was quantified by microscopy after May-Grunwald/Giemsa stain. The inhibition results highlight a significant (P < 0.05) competition of the considered probiotics against all the Candida strains. The results suggest that the probiotic strains used in this study could prevent colonization of the urogenital tract by relevant pathogens such as Candida strains through barrier and interference mechanisms (mainly displacement and competition), but the degree of inhibition of adhesion was bacterial strain-dependent. Conclusions: The results support the potential of these Lactobacillus probiotic strains as anti-infective agents in the vagina and encourage further studies about their capacity to prevent and manage urogenital tract infections in females. Significance and Impact of the Study: To optimize the defensive properties of the vaginal microbiota, improving the health of many women by probiotic intervention

    Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control

    Get PDF
    We demonstrate the generation of high-dimensional entangled photon pairs with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control scheme using standard telecommunications components

    Nonlinear properties of AlGaAs waveguides in continuous wave operation regime

    Get PDF
    Aluminum Gallium Arsenide (AlGaAs) is an attractive platform for the development of integrated optical circuits for all-optical signal processing thanks to its large nonlinear coefficients in the 1.55-μm telecommunication spectral region. In this paper we discuss the results of the nonlinear continuous-wave optical characterization of AlGaAs waveguides at a wavelength of 1.55 μm. We also report the highest value ever reported in the literature for the real part of the nonlinear coefficient in this material (Re(γ) ≈521 W&lt;sup&gt;−1&lt;/sup&gt;m&lt;sup&gt;−1&lt;/sup&gt;)

    Contribution of red blood cells to the compensation for hypocapnic alkalosis through plasmatic strong ion difference variations

    Get PDF
    Introduction Chloride shift is the movement of chloride between red blood cells (RBC) and plasma (and vice versa) caused by variations in pCO2. The aim of our study was to investigate changes in plasmatic strong ion diff erence (SID) during acute variations in pCO2 and their possible role in the compensation for hypocapnic alkalosis.Methods Patients admitted in this year to our ICU requiring extracorporeal CO2 removal were enrolled. Couples of measurements of gases and electrolytes on blood entering (v) and leaving (a) the respiratory membrane were analyzed. SID was calculated as [Na+] + [K+] + 2[Ca2+] \u2013 [Cl\u2013] \u2013 [Lac\u2013]. Percentage variations in SID (SID%) were calculated as (SIDv \u2013 SIDa) x 100 / SIDv. The same calculation was performed for pCO2 (pCO2%). Comparison between v and a values was performed by paired t test or the signed-rank test, as appropriate. Results Analysis was conducted on 205 sample-couples of six enrolled patients. A signifi cant diff erence (P <0.001) between mean values of v\u2013a samples was observed for pH (7.41 \ub1 0.05 vs. 7.51 \ub1 0.06), pCO2 (48 \ub1 6 vs. 35 \ub1 7 mmHg), [Na+] (136.3 \ub1 4.0 vs. 135.2 \ub1 4.0 mEq/l), [Cl\u2013] (101.5 \ub1 5.3 vs. 102.8 \ub1 5.2 mEq/l) and therefore SID (39.5 \ub1 4.0 vs. 36.9 \ub1 4.1 mEq/l). pCO2% and SID% signifi cantly correlated (r2 = 0.28, P <0.001). Graphical representation by quartiles of pCO2% is shown in Figure 1. Conclusions As a reduction in SID decreases pH, the observed movement of anions and cations probably limited the alkalinization caused by hypocapnia. In this model, the only source of electrolytes are blood cells (that is, no interstitium and no infl uence of the kidney is present); it is therefore conceivable to consider the observed phenomenon as the contribution of RBC for the compensation of acute hypocapnic alkalosi

    Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    Get PDF
    This work was supported by the EPSRC grant EP/ J004200/1. D.F. acknowledges financial support from the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013)/ERC GA 306559 and EPSRC (UK, Grant No. EP/J00443X/1). L.C. and M.C. acknowledge the support from the People Programme (Marie Curie Actions) of the European Union’s FP7 Programme THREEPLE (GA 627478) and KOHERENT (GA 299522). A.C. and C.R. acknowledge support from U.S. Army International Technology Center Atlantic for financial support (Grant No. W911NF-14-1-0315).Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.Publisher PDFPeer reviewe

    Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation

    Get PDF
    Nanophotonics and metamaterials have revolutionised the way we think about optical space (epsilon, mu), enabling us to engineer the refractive index almost at will, to confine light to the smallest of the volumes, and to manipulate optical signals with extremely small footprints and energy requirements. Significant efforts are now devoted to finding suitable materials and strategies for the dynamic control of the optical properties. Transparent conductive oxides exhibit large ultrafast nonlinearities under both interband and intraband excitations. Here, we show that combining these two effects in aluminium-doped zinc oxide via a two colour laser field discloses new material functionalities. Owing to the independence of the two nonlinearities the ultrafast temporal dynamics of the material permittivity can be designed by acting on the amplitude and delay of the two fields. We demonstrate the potential applications of this novel degree of freedom by dynamically addressing the modulation bandwidth and optical spectral tuning of a probe optical pulse

    Enhanced nonlinear refractive index in ε-near-zero materials

    Get PDF
    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n2) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.Publisher PDFPeer reviewe

    Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Get PDF
    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices

    Adiabatic frequency shifting in epsilon-near-zero materials:The role of group velocity

    Get PDF
    The conversion of a photon’s frequency has long been a key application area of nonlinear optics. It has been discussed how a slow temporal variation of a material’s refractive index can lead to the adiabatic frequency shift (AFS) of a pulse spectrum. Such a rigid spectral change has relevant technological implications, for example, in ultrafast signal processing. Here, we investigate the AFS process in epsilon-near-zero (ENZ) materials and show that the frequency shift can be achieved in a shorter length if operating in the vicinity of Re
    • …
    corecore