4,254 research outputs found

    Production study of gadolinium-153

    Get PDF
    Production of gadolinium-153 for use in atmospheric density gages based on gamma backscatter measurement

    Results of Millikan Library Forced Vibration Testing

    Get PDF
    This report documents an investigation into the dynamic properties of Millikan Library under forced excitation. On July 10, 2002, we performed frequency sweeps from 1 Hz to 9.7 Hz in both the East-West (E-W) and North-South (N-S) directions using a roof level vibration generator. Natural frequencies were identified at 1.14 Hz (E-W fundamental mode), 1.67 Hz (N-S fundamental mode), 2.38 Hz (Torsional fundamental mode), 4.93 Hz (1st E-Wovertone), 6.57 Hz (1st Torsional overtone), 7.22 Hz (1st N-S overtone), and at 7.83 Hz (2nd E-Wovertone). The damping was estimated at 2.28% for the fundamental E-W mode and 2.39% for the N-S fundamental mode. On August 28, 2002, a modal analysis of each natural frequency was performed using the dense instrumentation network located in the building. For both the E-W and N-S fundamental modes, we observe a nearly linear increase in displacement with height, except at the ground floor which appears to act as a hinge. We observed little basement movement for the E-W mode, while in the N-S mode 30% of the roof displacement was due to basement rocking and translation. Both the E-W and N-S fundamental modes are best modeled by the first mode of a theoretical bending beam. The higher modes are more complex and not well represented by a simple structural system

    Head to head tests of the hydrodynamic support for Saturn V

    Get PDF
    Head to head tests on Saturn V hydrodynamic support to determine performance compared with mathematical model predictio

    The Observed Wander of the Natural Frequencies in a Structure

    Get PDF
    The Southern California Seismic Network (scsn) has recently installed seismic stations in two buildings on the Caltech campus (Millikan Library and the Broad Center). Continuous real-time accelerometer data from these structures are now freely available to the community. This dataset provides a new opportunity to observe, and better understand, the variances in the primary dynamic property of a building system, its natural frequencies. Historical data (triggered strong-motion records, ambient and forced vibration tests) from the well-studied Millikan Library show dramatic decreases in natural frequencies, attributed mainly to moderately large local earthquakes. The current forced vibration east–west fundamental frequency is 22% lower than that originally measured in 1968. Analysis of the new continuous data stream allows the examination of other previously unrecognized sources of measurable change in the fundamental frequencies, such as weather (wind, rain, and temperature), as well as nonlinear building vibrations from small local and moderate regional earthquakes. Understanding these nonlinear shifts is one of the long-term goals of real-time building instrumentation and is critical if these systems are to be used as a postearthquake damage assessment tool

    Landlord Tenant Relations: A Report of the Landlord Tenant Relations Subcommittee of the North-Central Regional Land Tenure Committee

    Get PDF

    A discrete Schrodinger spectral problem and associated evolution equations

    Get PDF
    A recently proposed discrete version of the Schrodinger spectral problem is considered. The whole hierarchy of differential-difference nonlinear evolution equations associated to this spectral problem is derived. It is shown that a discrete version of the KdV, sine-Gordon and Liouville equations are included and that the so called `inverse' class in the hierarchy is local. The whole class of related Darboux and Backlund transformations is also exhibited.Comment: 14 pages, LaTeX2

    Dynamical Behaviour of Low Autocorrelation Models

    Full text link
    We have investigated the nature of the dynamical behaviour in low autocorrelation binary sequences. These models do have a glass transition TGT_G of a purely dynamical nature. Above the glass transition the dynamics is not fully ergodic and relaxation times diverge like a power law τ∼(T−TG)−γ\tau\sim (T-T_G)^{-\gamma} with γ\gamma close to 22. Approaching the glass transition the relaxation slows down in agreement with the first order nature of the dynamical transition. Below the glass transition the system exhibits aging phenomena like in disordered spin glasses. We propose the aging phenomena as a precise method to determine the glass transition and its first order nature.Comment: 19 pages + 14 figures, LateX, figures uuencoded at the end of the fil
    • …
    corecore