5,975 research outputs found

    Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    Get PDF
    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations

    Assessing the Utility of 3-km Land Information System Soil Moisture Data for Drought Monitoring and Hydrologic Applications

    Get PDF
    The NASA Short term Prediction Research and Transition (SPoRT) Center in Huntsville, AL has been running a real-time configuration of the Noah land surface model within the NASA Land Information System (LIS) since June 2010. The SPoRT LIS version is run as a stand-alone land surface model over a Southeast Continental U.S. domain with 3-km grid spacing. The LIS contains output variables including soil moisture and temperature at various depths, skin temperature, surface heat fluxes, storm surface runoff, and green vegetation fraction (GVF). The GVF represents another real-time SPoRT product, which is derived from the Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua and Terra satellites. These data have demonstrated operational utility for drought monitoring and hydrologic applications at the National Weather Service (NWS) office in Huntsville, AL since early 2011. The most relevant data for these applications have proven to be the moisture availability (%) in the 0-10 cm and 0-200 cm layers, and the volumetric soil moisture (%) in the 0-10 cm layer. In an effort to better understand their applicability among locations with different terrain, soil and vegetation types, SPoRT is conducting the first formal assessment of these data at NWS offices in Houston, TX, Huntsville, AL and Raleigh, NC during summer 2014. The goal of this assessment is to evaluate the LIS output in the context of assessing flood risk and determining drought designations for the U.S. Drought Monitor. Forecasters will provide formal feedback via a survey question web portal, in addition to the NASA SPoRT blog. In this presentation, the SPoRT LIS and its applications at NWS offices will be presented, along with information about the summer assessment, including training module development and preliminary results

    The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    Get PDF
    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals

    Some triviality results for quasi-Einstein manifolds and Einstein warped products

    Full text link
    In this paper we prove a number of triviality results for Einstein warped products and quasi-Einstein manifolds using different techniques and under assumptions of various nature. In particular we obtain and exploit gradient estimates for solutions of weighted Poisson-type equations and adaptations to the weighted setting of some Liouville-type theorems.Comment: 15 pages, fixed minor mistakes in Section

    A Map of Update Constraints in Inductive Inference

    Full text link
    We investigate how different learning restrictions reduce learning power and how the different restrictions relate to one another. We give a complete map for nine different restrictions both for the cases of complete information learning and set-driven learning. This completes the picture for these well-studied \emph{delayable} learning restrictions. A further insight is gained by different characterizations of \emph{conservative} learning in terms of variants of \emph{cautious} learning. Our analyses greatly benefit from general theorems we give, for example showing that learners with exclusively delayable restrictions can always be assumed total.Comment: fixed a mistake in Theorem 21, result is the sam

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    A zone of preferential ion heating extends tens of solar radii from Sun

    Full text link
    The extreme temperatures and non-thermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the lower corona to an outer boundary 20-40 solar radii from the Sun, producing a steady state super-mass-proportional α\alpha-to-proton temperature ratio of 5.25.35.2-5.3. Preferential ion heating continues far beyond the transition region and is important for the evolution of both the outer corona and the solar wind. The outer boundary of this zone is well below the orbits of spacecraft at 1 AU and even closer missions such as Helios and MESSENGER, meaning it is likely that no existing mission has directly observed intense preferential heating, just residual signatures. We predict that {Parker Solar Probe} will be the first spacecraft with a perihelia sufficiently close to the Sun to pass through the outer boundary, enter the zone of preferential heating, and directly observe the physical mechanism in action.Comment: 11 pages, 7 figures, accepted for publication in the Astrophysical Journal on 1 August 201

    Space suit

    Get PDF
    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

    Get PDF
    [1] At the start of the Lunar Reconnaissance Orbiter mission in 2009, its Cosmic Ray Telescope for the Effects of Radiation instrument measured the radiation environment near the Moon during the recent deep solar minimum, when galactic cosmic rays (GCRs) were at the highest level observed during the space age. We present observations that show the combined effects of GCR primaries, secondary particles (“albedo”) created by the interaction of GCRs with the lunar surface, and the interactions of these particles in the shielding material overlying the silicon solid-state detectors of the Cosmic Ray Telescope for the Effects of Radiation. We use Geant4 to model the energy and angular distribution of the albedo particles, and to model the response of the sensor to the various particle species reaching the 50 kilometer altitude of the Lunar Reconnaissance Orbiter. Using simulations to gain insight into the observations, we are able to present preliminary energy-deposit spectra for evaluation of the radiation environment\u27s effects on other sensitive materials, whether biological or electronic, that would be exposed to a similar near-lunar environment
    corecore