61 research outputs found

    Targeted Mutagenesis of a Therapeutic Human Monoclonal IgG1 Antibody Prevents Gelation at High Concentrations

    Get PDF
    A common challenge encountered during development of high concentration monoclonal antibody formulations is preventing self-association. Depending on the antibody and its formulation, self-association can be seen as aggregation, precipitation, opalescence or phase separation. Here we report on an unusual manifestation of self-association, formation of a semi-solid gel or ā€œgelationā€. Therapeutic monoclonal antibody C4 was isolated from human B cells based on its strong potency in neutralizing bacterial toxin in animal models. The purified antibody possessed the unusual property of forming a firm, opaque white gel when it was formulated at concentrations \u3e40 mg/mL and the temperature wa

    Construction and functional analyses of a comprehensive Ļƒ54 site-directed mutant library using alanineā€“cysteine mutagenesis

    Get PDF
    The Ļƒ54 factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. Ļƒ54 is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define Ļƒ54 residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of Ļƒ54 was constructed by alanineā€“cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)Ļƒ54 were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of Ļƒ54 were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased Ļƒ54 isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after Ļƒ54 isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the Ļƒ54-core RNAP interface changes upon activation

    Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF

    Get PDF
    This is the publisher's version, also available electronically from http://iai.asm.org/content/81/11/4220VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genes icsA, virB, icsB, and ipaB in Shigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion by Shigella. The effect of SE-1 on invasion required preincubation of Shigella with SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent

    Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation

    Get PDF
    Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins

    A TEF-1-independent mechanism for activation of the simian virus 40 (SV40) late promoter by mutant SV40 large T antigens.

    Get PDF
    Simian virus 40 (SV40) large tumor antigen (T antigen) stimulates the activity of the SV40 late promoter and a number of cellular and other viral promoters. We have characterized the ability of T antigens with mutations in the DNA-binding domain and within the N-terminal 85 residues to activate the SV40 late promoter. T antigens lacking both nonspecific and sequence-specific DNA-binding activities were able to induce the late promoter. Mutations within the N-terminal 85 residues of T antigen diminished activation by less than twofold. Activation by wild-type and most of the mutant T antigens required intact binding sites for the cellular transcription factor TEF-1 in the late promoter. Curiously, two mutants altered in the N-terminal region and an additional mutant altered in the DNA-binding domain activated a late promoter derivative lacking TEF-1 binding sites, indicating the existence of a TEF-1-independent pathway for activation of the late promoter. A consensus binding site for the TATA binding protein, TBP, was created in variants of late promoters either containing or lacking TEF-1 binding sites. Basal expression was increased by the consensus TBP binding site only when TEF-1 binding sites were present, leading to a reduction in the degree of activation by T antigen. However, activation by a mutant T antigen of the promoter lacking TEF-1 sites was unchanged or slightly enhanced by the consensus TBP binding site. These results suggest that some mutant T antigens can stabilize an interaction between TBP and additional factors bound to the late promoter
    • ā€¦
    corecore