39 research outputs found

    Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices

    Get PDF
    Macrophages, cells effective in sensing, internalizing and killing Candida albicans, are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/Candida albicans interface. The present study has allowed us to detect differences on the activation of macrophages cultured on either human- or porcine-derived DAMs, evidencing changes in the macrophage actin cytoskeleton, such as distinct F-actin-rich membrane structures to surround the pathogen. The macrophage morphological changes observed on these four DAMs are key to understand the defense capability of these cells against this fungal pathogen. This work has contributed to the knowledge of the influence that the extracellular matrix and its components can exert on macrophage metabolism, immunocompetence and capacity to respond to the microenvironment in a possible infection scenario.This work has been supported by the European Union’s Horizon 2020 Research and Innovation Programme (H2020-FETOPEN-2018-2020, NeuroStimSpinal Project, Grant AgreementNo. 829060). M.C. acknowledges the European Union0s Horizon 2020 Research and InnovationProgramme for her contract under the NeuroStimSpinal Project. LC is grateful to the Universidad Complutense de Madrid for a UCM fellowshi

    Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence

    Get PDF
    The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.This work has been supported by the European Union’s Horizon 2020 Research and Innovation Programme (H2020-FETOPEN-2018-2020, NeuroStimSpinal Project, Grant Agreement No. 829060). M.C. acknowledges the European Union0s Horizon 2020 Research and Innovation Programme for her contract under the NeuroStimSpinal Project. LC is grateful to the Universidad Complutense de Madrid for an UCM fellowship

    Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite

    Get PDF
    Hypothesis: Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200ºC) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700ºC) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Experiments: Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages)have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. Findings: This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone

    Incorporation and effects of mesoporous SiO2-CaO nanospheres loaded with ipriflavone on osteoblast/osteoclast cocultures

    Get PDF
    Mesoporous nanospheres in the system SiO2-CaO (NanoMBGs) with a hollow core surrounded by a radial arrangement of mesopores were characterized, labeled with FITC (FITC-NanoMBGs) and loaded with ipriflavone (NanoMBG-IPs) in order to evaluate their incorporation and their effects on both osteoblasts and osteoclasts simultaneously and maintaining the communication with each other in coculture. The influence of these nanospheres on macrophage polarization towards pro-inflammatory M1 or reparative M2 phenotypes was also evaluated in basal and stimulated conditions through the expression of CD80 (as M1 marker) and CD206 (as M2 marker) by flow cytometry and confocal microscopy. NanoMBGs did not induce the macrophage polarization towards the M1 pro-inflammatory phenotype, favoring the M2 reparative phenotype and increasing the macrophage response capability against stimuli as LPS and IL-4. NanoMBG-IPs induced a significant decrease of osteoclast proliferat ion and resorption activity after 7 days in coculture with osteoblasts, without affecting osteoblast proliferation and viability. Drug release test demonstrated that only a fraction of the payload is released by diffusion, whereas the rest of the drug remains within the hollow core after 7 days, thus ensuring the local long-term pharmacological treatment beyond the initial fast IP release. All these data ensure an appropriate immune response to these nanospheres and the potential application of NanoMBG-IPs as local drug delivery system in osteoporotic patients

    Effective Actions of Ion Release from Mesoporous Bioactive Glass and Macrophage Mediators on the Differentiation of Osteoprogenitor and Endothelial Progenitor Cells

    Get PDF
    Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration

    Moderate SIRT1 overexpression protects against brown adipose tissue inflammation

    Get PDF
    Objective: Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is demanding to find strategies to protect BAT against the effects of inflammation in energy balance. In this study we have explored the impact of moderate Sirtuin 1 (SIRT1) overexpression in insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. Methods: The effect of inflammation in BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies in differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophagederived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), as well as norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. Results: BAT from db/db mice was susceptible to metabolic inflammation manifested by activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in lean WT mice upon LPS injection. By contrast, BAT from mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPSinduced activation of pro-inflammatory signaling, insulin resistance and defective thermogenicrelated responses upon cold exposure. Importantly, the drop of triiodothyronine (T3) levels both in circulation and intra-BAT after exposure of WT mice to LPS and cold was markedly attenuated in SIRT1Tg+ mice. In vitro experiments in BA from the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophagederived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. Conclusion: This study has unraveled the benefit of moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by inflammation in BAT. Our results have potential therapeutic value proposing combinatorial therapies of BATspecific thyromimetics and SIRT1 activators to combat metainflammation in this tissue

    Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candida albicans interface

    Get PDF
    The use of nanoparticles for intracellular drug delivery could reduce the toxicity and side effects of the drug but, the uptake of these nanocarriers could induce adverse effects on cells and tissues after their incorporation. Macrophages play a central role in host defense and are responsible for in vivo nanoparticle trafficking. Assessment of their defense capacity against pathogenic micro-organisms after nanoparticle uptake, is necessary to prevent infections associated with nanoparticle therapies. In this study, the effects of hollow mesoporous SiO2-CaO nanospheres labeled with fluorescein isothiocyanate (FITC-NanoMBGs) on the function of peritoneal macrophages was assessed by measuring their ability to phagocytize Candida albicans expressing a red fluorescent protein. Two macrophage/fungus ratios (MOI 1 and MOI 5) were used and two experimental strategies were carried out: a) pretreatment of macrophages with FITC-NanoMBGs and subsequent fungal infection; b) competition assays after simultaneous addition of fungus and nanospheres. Macrophage pro-inflammatory phenotype markers(CD80 expression and interleukin 6 secretion) were also evaluated. Significant decreases of CD80+ macrophage percentage and interleukin 6 secretion were observed after 30 min, indicating that the simultaneous incorporation of NanoMBG and fungus favors the macrophage non-inflammatory phenotype. The present study evidences that the uptake of these nanospheres in all the studied conditions does not alter the macrophage function. Moreover, intracellular FITC-NanoMBGs induce a transitory increase of the fungal phagocytosis by macrophages at MOI 1 and after a short time of interaction. In the competition assays, as the intracellular fungus quantity increased, the intracellular FITC-NanoMBG content decreased in a MOI- and time-dependent manner. These results have confirmed that macrophages clearly distinguish between inert material and the live yeast in a dynamic intracellular incorporation. Furthermore, macrophage phagocytosis is a critical determinant to know their functional state and a valuable parameter to study the nanomaterial / macrophages / Candida albicans interface

    Effects of ipriflavone-loaded mesoporous nanospheres on the differentiation of endothelial cells and their modulation by macrophages.

    Get PDF
    Angiogenic biomaterials for bone repair are being designed to promote vascularization and optimize tissue regeneration. The use of nanoparticles of bioactive materials loaded with different drugs represents an interesting strategy to stimulate osteogenesis and angiogenesis and to inhibit bone resorption. Ipriflavone (IP) prevents osteoporosis by inhibiting osteoclast activity and promoting preosteoblast differentiation into mature osteoblasts. Since endothelial progenitor cells (EPCs) are involved in the formation of blood vessels which are necessary for tissue regeneration, the isolation and characterization of porcine EPCs have been carried out in this work to evaluate the in vitro effects of unloaded (NanoMBGs) and IP-loaded nanospheres (NanoMBG-IPs) designed to stimulate osteogenesis. Because different signals between vascular and nonvascular cells are also essential to initiate angiogenic events, the potential modulating role of macrophages has been also evaluated by studying the expression of vascular endothelial growth factor receptor 2 (VEFGR2) as a specific marker for EPC differentiation under different culture conditions: a) EPCs in monoculture treated with NanoMBGs or NanoMBG-IPs, b) EPCs treated with conditioned media from basal, proinflammatory M1 and reparative M2 macrophages previously treated with NanoMBGs or NanoMBG-IPs, c) EPCs cocultured with macrophages in the presence of NanoMBGs or NanoMBG-IPs, and d) EPCs cocultured with M2d angiogenic macrophages. Moreover, the endocytic mechanisms by which these nanospheres are incorporated by EPCs have been identified by using six endocytosis inhibitors (i.e. wortmannin, genistein, cytochalasin B, cytochalasin D, phenylarsine oxide and chlorpromazine) and before the addition of NanoMBGs labeled with fluorescein isothiocyanate. The results evidence the great potential of both NanoMBGs and NanoMBG-IPs to enhance VEFGR2 expression, directly related to angiogenesis, after intracellular incorporation by EPCs through different endocytic mechanisms including clathrin-dependent endocytosis, as the main entry mechanism, but also phagocytosis and caveolae-mediated uptake. The treatment of EPCs with culture media from basal, M1 and M2 macrophages and the development of cocultures of EPCs with macrophages in the absence and presence of these nanomaterials have also confirmed the maintenance of their angiogenic effect on EPCs even in the presence of phagocytic cells

    An immunological approach to the biocompatibility of mesoporous SiO2-CaO nanospheres.

    Get PDF
    Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinicalapplications. However, the impact of nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines likevSR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells
    corecore