648 research outputs found

    Optimal Trajectories for Near-Earth-Objects Using Solar Electric Propulsion (SEP) and Gravity Assisted Maneuver

    Get PDF
    The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded for the process of optimization of trajectories. Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method will be used in the simulations

    Robust Design Approaches for Hybrid Rocket Upper Stage

    Get PDF
    Computational costs of robust-based design optimization methods may be very high. Evaluation of new procedures for the management of uncertainty with applications to hybrid rocket engines is here carried out. Two newly developed procedures are presented (hybrid algorithm and iterated local search), and their performances are compared with those of two previously developed procedures (genetic algorithm and particle swarm optimization). A liquid oxygen/paraffin-based fuel hybrid rocket engine that powers the third stage of a Vega-like launcher is considered. The conditions at third-stage ignition are assigned, and a proper set of parameters are used to define the engine design and compute the payload mass. Uncertainties in the regression rate are taken into account. An indirect trajectory optimization approach is used to determine a mission-specific objective function, which takes into account both the payload mass and ability of the rocket to reach the required final orbit despite uncertainties. Results show that for this kind of problem, particle swarm optimization and iterated local search outperform the genetic algorithm, but the use of a local search operator may slightly improve its performance

    Definition of a benchmark for low Reynolds number propeller aeroacoustics

    Get PDF
    Experimental and numerical results of a propeller of 0.3 m diameter operated at 5000 RPM and axial velocity ranging from 0 to 20 m/s and advance ratio ranging from 0 to 0.8 are presented as a preliminary step towards the definition of a benchmark configuration for low Reynolds number propeller aeroacoustics. The corresponding rotational tip Mach number is 0.23 and the Reynolds number based on the blade sectional chord and flow velocity varies from about 46000 to 106000 in the operational domain and in the 30% to 100% blade radial range. Force and noise measurements carried out in a low-speed semi-anechoic wind-tunnel are compared to scale-resolved CFD and low-fidelity numerical predictions. Results identify the experimental and numerical challenges of the benchmark and the relevance of fundamental research questions related to transition and other low Reynolds number effects

    Towards the definition of a benchmark for low Reynolds number propeller aeroacoustics

    Get PDF
    Experimental and numerical results of a propeller of 0.3 m diameter operated in quiescent standard ambient conditions at 5000 RPM and axial velocity ranging from 0 to 20 m/s and advance ratio ranging from 0 to 0.8 are presented as a preliminary step towards the definition of a benchmark configuration for low Reynolds number propeller aeroacoustics. The corresponding rotational tip Mach number is 0.231 and the Reynolds number based on the blade sectional chord and flow velocity in the whole radial and operational domain ranges from about 54000 to 106000. Force and noise measurements carried out in a low-speed semi-anechoic windtunnel are compared with scale-resolved CFD and low-fidelity numerical results. Results identify the experimental and numerical challenges of the benchmark and the relevance of fundamental research questions related to transition and other low Reynolds number effects

    Deep learning for knowledge tracing in learning analytics: An overview

    Get PDF
    Learning Analytics (LA) is a recent research branch that refers to methods for measuring, collecting, analyzing, and reporting learners’ data, in order to better understand and optimize the processes and the environments. Knowledge Tracing (KT) deals with the modeling of the evolution, during the time, of the students’ learning process. Particularly its aim is to predict students’ outcomes in order to avoid failures and to support both students and teachers. Recently, KT has been tackled by exploiting Deep Learning (DL) models and generating a new, ongoing, research line that is known as Deep Knowledge Tracing (DKT). This was made possible by the digitalization process that has simplified the gathering of educational data from many different sources such as online learning platforms, intelligent objects, and mainstream IT-based systems for education. DKT predicts the student’s performances by using the information embedded in the collected data. Moreover, it has been shown to be able to outperform the state-of-the-art models for KT. In this paper, we briefly describe the most promising DL models, by focusing on their prominent contribution in solving the KT task

    Effect of Vortex Generators on NREL Wind Turbine: Aerodynamic Performance and Far-Field Noise

    Get PDF
    Passive flow separation control with vortex generators (VG) is actively used over the wind turbine blade. In this paper, the effect of vortex generators is simulated on a full-scale 2-blade wind-turbine tested at the National Renewable Energy Laboratory. The simulation is performed using Very-Large-Eddy/Lattice-Boltzmann method (VLES/LBM). The analysis focuses on the effect of vortex generators on the aerodynamic performance and far-field noise. The simulation results without vortex generators are compared with the experimental results, reaching good agreement. The vortex generators produce counter-rotating vortices in the wake which effectively delay flow separation, leading to better aerodynamic performance. The acoustic analysis indicates that the dominant noise sources are the tonal noise produced by the flow separation and the turbulent-boundary-layer trailing-edge noise. Similar noise levels are obtained for the configurations with and without vortex generators

    Electric Drive Supervisor for Milling Process 4.0 Automation : A Process Analytical Approach with IIoT NIR Devices for Common Wheat

    Get PDF
    The milling industry envisions solutions to become fully compatible with the industry 4.0 technology where sensors interconnect devices, machines and processes. In this contest, the work presents an integrated solution merging a deeper understanding and control of the process due to real-time data collection by MicroNIR sensors (VIAVI, Santa Rosa, CA)\u2014directly from the manufacturing process\u2014and data analysis by Chemometrics. To the aim the sensors were positioned at wheat cleaning and at the flour blends phase and near infrared spectra (951\u20131608 nm) were collected online. Regression models were developed merging the spectra information with the results obtained by reference analyses, i.e., chemical composition and rheological properties of dough by Farinograph\uae (Brabender GmbH and Co., Duisburg, Germany), Alveograph\uae (Chopin, NG Villeneuve-la-Garenne Cedex, France) and Extensograph\uae.(Brabender GmbH and Co., Duisburg, Germany) The model performance was tested by an external dataset obtaining, for most of the parameters, RPRED higher than 0.80 and Root Mean Squares Errors in prediction lower than two-fold the value of the reference method errors. The real-time implementation resulted in optimal (100% of samples) or really good (99.9%\u201380% of samples) prediction ability. The proposed work succeeded in the implementation of a process analytical approach with Industrial Internet of Things near infrared (IIoT NIR) devices for the prediction of relevant grain and flour characteristics of common wheat at the industrial level

    Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Get PDF
    As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F) and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr) composite coatings were fabricated by the multilayer laser cladding technique (MLC). An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings

    Laser offset welding of AZ31B magnesium alloy to 316 stainless steel

    Get PDF
    In this paper, the feasibility of using a fiber laser to perform a dissimilar metal joining was explored. AZ31B magnesium and 316 stainless steel were autogenously joined in butt configuration. The weldability between different materials is often compromised by a large difference in thermal properties and poor metallurgical compatibility. Thus, the beam was focused onto the top surface of the magnesium plate, at a certain distance from the interfaces (offset), and without using any interlayer or groove preparation. Such a method was called laser offset welding (LOW). Results proved a very good capability. The ultimate tensile strength exceeded the value of 100 MPa, since a resistant and thin layer of hard intermetallic compounds is formed within the fusion zone. The rupture was observed within the magnesium side, far from the centerline. The metallurgy of fusion zone indicated the effectiveness of phases coalescence, without mixing at liquid states. LOW was demonstrated to be a promising technique to join dissimilar metal welds, being capable to produce an effective bonding with good tensile strength
    • …
    corecore