142 research outputs found

    A Genetic Algorithm solver for pest management control in Island systems

    Get PDF
    Island conservation management is a truly multidisciplinary problem that requires considerable knowledge of the characteristics of the ecosystem, species and their interactions. Nevertheless, this can be translated into an optimisation problem. Essentially, within a limited budget, a manager needs to select the conservation actions according to expected payoffs (in terms of protecting or restoring desired species) versus cost (the amount of resources/money) required for the actions. This paper presents the problem in terms of a knapsack formulation and develops optimisation techniques to solve it. From this, decision-support software is being developed, tailored to meet the needs of pest control on islands for conservation managers. The solver uses a Genetic Algorithm and incorporates a simplified model of the problem. The solver derives strategies that reduce the number of threats, allowing the preservation of desired species. However, the problem model needs further refinement to derive truly realistic options for conservation managers

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting

    Get PDF
    Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities

    The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation

    Get PDF
    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US14pertonneofcarbondioxideequivalent)onpriorityareasforconservationandtheimpactofexplicitlyprotectingcarbonstocksinadditiontobiodiversity.OurresultsshowthatimprovedmanagementcanpotentiallyraiseapproximatelyUS14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US5 per hectare per year in carbon revenue and prevent the release of 1–2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments

    Improving policy efficiency and effectiveness to save more species: A case study of the megadiverse country Australia

    Get PDF
    Native flora and fauna species continue to decline in the megadiverse, wealthy, economically and politically stable nation of Australia despite current efforts in policy and management. Ongoing research is examining these declines, their causes and the adequacy of current policy, but strategies for improving the outcomes for threatened species have attracted less attention. We discuss several key aspects of Australia's national threatened species management approach that potentially hinder the efficiency and effectiveness of management: the threatened species listing process is lengthy and biased; recovery plan development is resource intensive, restricted to a subset of species and often not effective; funding for threatened species management is not allocated efficiently or transparently; and management is not designed to incorporate uncertainties and adapt to changing future threats. Based on these issues we recommend four changes to current process: rationalize listing and assessment processes; develop approaches to prioritize species-based and threat-based responses cost-effectively; estimate funds required to recover species and secure longer term funding; and accommodate uncertainties and new threats into the current planning framework. Cost-effective prioritization for species and threats identifies which actions are likely to achieve the greatest benefits to species per unit cost, thereby managing more species and threats with available funds. These improvements can be made without legislative reform, additional funding or socio-economic shifts. If implemented, we believe more Australian threatened species will benefit from current efforts. Many of the challenges facing Australia are analogous to issues in other countries including the United States, Canada and the United Kingdom and these recommendations could assist in improving threatened species management. (C) 2014 Elsevier Ltd. All rights reserved

    Restoring habitat for fire-impacted species’ across degraded Australian landscapes

    Get PDF
    In the summer of 2019–2020, southern Australia experienced the largest fires on record, detrimentally impacting the habitat of native species, many of which were already threatened by past and current anthropogenic land use. A large-scale restoration effort to improve degraded species habitat would provide fire-affected species with the chance to recover and persist in burnt and unburnt habitat. To facilitate this, decision-makers require information on priority species needs for restoration intervention, the suite of potential restoration interventions, and the priority locations for applying these interventions. We prioritize actions in areas where restoration would most likely provide cost-effective benefits to priority species (defined by each species proportion of habitat burned, threat status, and vulnerability to fires), by integrating current and future species habitat suitability maps with spatially modelled costs of restoration interventions such as replanting, removing invasive species, and implementing ecologically appropriate fire management. We show that restoring the top ∼69% (112 million hectares) of the study region (current and future distributions of priority species) accounts for, on average, 95% of current and future habitat for every priority species and costs ∼AUD73billionyr1(AUD73 billion yr−1 (AUD650 hectare−1 yr−1 ) annualized over 30 years. This effort would include restoration actions over 6 million hectares of fire-impacted habitat, costing ∼AUD8.8billion/year.Largescalerestorationeffortsareoftencostlybutcanhavesignificantsocietalcobenefitsbeyondbiodiversityconservation.Wealsoshowthatupto291MtCO2(150MtDM)ofcarboncouldbesequesteredbyrestorationefforts,resultinginapproximatelyAUD8.8 billion/year. Large scale restoration efforts are often costly but can have significant societal co-benefits beyond biodiversity conservation. We also show that up to 291 MtCO2 (∼150 Mt DM) of carbon could be sequestered by restoration efforts, resulting in approximately AUD253 million yr−1 in carbon market revenue if all carbon was remunerated. Our approach highlights the scale, costs, and benefits of targeted restoration activities both inside and outside of the immediate bushfire footprint over vast areas of different land tenures.Michelle Ward, Ayesha Tulloch, Romola Stewart, Hugh P Possingham, Sarah Legge, Rachael V Gallagher, Erin M Graham, Darren Southwell, David Keith, Kingsley Dixon, Chuanji Yong, Josie Carwardine, Tim Cronin, April E Reside, and James E M Watso

    Insect threats and conservation through the lens of global experts

    Get PDF
    While several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.Peer reviewe
    corecore