30,449 research outputs found

    Thermal treatment of superconductor thin film of the BSCCO system using domestic microwave oven

    Full text link
    In this work, we report the preparation of a superconductor thin film of the BSCCO system using a good quality powder with nominal composition Bi_{1.8}Pb_{0.4}Sr_2CaCu_2O_x which was thermally treated using a domestic microwave oven (2.45 GHz, 800 W). This film was grew on a single crystal of LaAlO_3(100) substrate and exhibited a crystalline structure with the c-axis perpendicular to the plane of the substrate. An onset superconducting transition temperature was measured at 80 K.Comment: 4 pages, 5 figure

    Magnetic phases evolution in the LaMn1-xFexO3+y system

    Full text link
    We have investigated the crystal structure and magnetic properties for polycrystalline samples of LaMn1-xFexO3+y, in the whole range x=0.0 to x=1.0, prepared by solid state reaction in air. All samples show the ORT-2 orthorhombic structure that suppresses the Jahn-Teller distortion, thus favoring a ferromagnetic (FM) superexchange (SE) interaction between Mn^{3+}-O-Mn^{3+}. For x=0.0 the oxygen excess (y ~ 0.09) produces vacancies in the La and Mn sites and generates a fraction around 18% of Mn^{4+} ions and 82% of the usual Mn^{3+} ions, with possible double exchange interaction between them. The Fe doping in this system is known to produce only stable Fe^{3+} ions. We find an evolution from a fairly strong FM phase with a Curie temperature T_{C} ~ 160 K, for x=0.0, to an antiferromagnetic (AFM) phase with T_{N} = 790 K, for x=1.0, accompanied by clear signatures of a cluster-glass behavior. For intermediate Fe contents a mixed-phase state occurs, with a gradual decrease (increase) of the FM (AFM) phase, accompanied by a systematic transition broadening for 0.2 < x < 0.7. A model based on the expected exchange interaction among the various magnetic-ion types, accounts very well for the saturation-magnetization dependence on Fe doping.Comment: 27 pages, 9 figure

    The Two-Component Virial Theorem and the Physical Properties of Stellar Systems

    Get PDF
    Motivated by present indirect evidences that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem which explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the barionic or luminous component. Our analysis shows that the application of such a ``two-component virial theorem'' not only accounts for the scaling relations displayed, in particular, by elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.Comment: 13 pages, 2 figures, LaTeX, corrected few typos. This version matches the published versio

    Polarimetry of Compact Symmetric Objects

    Get PDF
    We present multi-frequency VLBA observations of two polarized Compact Symmetric Objects (CSOs), J0000+4054 and J1826+1831, and a polarized CSO candidate, J1915+6548. Using the wavelength-squared dependence of Faraday rotation, we obtained rotation measures (RMs) of -180 \pm 10 rad m^-2 and 1540 \pm 7 rad m^-2 for the latter two sources. These are lower than what is expected of CSOs (several 1000 rad m^-2) and, depending on the path length of the Faraday screens, require magnetic fields from 0.03 to 6 \mu G. These CSOs may be more heavily affected by Doppler boosting than their unpolarized counterparts, suggesting that a jet-axis orientation more inclined towards the line of sight is necessary to detect any polarization. This allows for low RMs if the polarized components are oriented away from the depolarizing circumnuclear torus. These observations also add a fourth epoch to the proper motion studies of J0000+4054 and J1826+1831, constraining their kinematic age estimates to >610 yrs and 2600 \pm 490 yrs, respectively. The morphology, spectrum, and component motions of J1915+6548 are discussed in light of its new classification as a CSO candidate, and its angle to the line of sight (~50\deg) is determined from relativistic beaming arguments.Comment: 29 pages, including 9 figures; Accepted by Astrophysical Journal, 16 Feb 0
    • …
    corecore