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THE TWO-COMPONENT VIRIAL THEOREM AND THE PHYSICAL PROPERTIES OF STELLAR SYSTEMS
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ABSTRACT

Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate
whether their physical properties can be described by a formulation of the virial theorem that explicitly takes
into account the gravitational potential term representing the interaction of the dark halo with the baryonic or
luminous component. Our analysis shows that the application of such a “two-component virial theorem” not only
accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties
of all virialized stellar systems, ranging from globular clusters to galaxy clusters.

Subject headings: cosmology: theory — dark matter — galaxies: elliptical and lenticular, cD —
galaxies: fundamental parameters — galaxies: halos — galaxies: kinematics and dynamics —
galaxies: structure

1. INTRODUCTION

It is expected on very fundamental grounds that the state of
equilibrium of self-gravitating, time-averaged stationary stellar
systems should be well described by the virial theorem. In fact,
elliptical galaxies, for instance, show a remarkable homoge-
neity which is expressed by a very tight kinematical-structural
relationship, the so-called “fundamental plane” (FP; Djorgovski
& Davis 1987; Dressler et al. 1987). Since it is believed that
these galaxies represent equilibrium systems, their intercon-
nected physical properties should reflect their virialized con-
dition. However, the FP is significantly “tilted” relative to the
relations expressed by the virial theorem applied to a family
of homologous objects. The nature of this discrepancy is con-
troversial and has been extensively debated in the literature
(e.g., Graham & Colless 1997; Ciotti, Lanzoni, & Renzini
1996; Pahre, Djorgovski, & de Carvalho 1998, and references
therein).

The FP “problem” can be stated as follows. The virial the-
orem, applied to a stationary self-gravitating system, states that

, where K is the kinetic energy and W is the po-2K 1 W = 0
tential energy of the system. This may be rewritten as 2Av S =

, where rG is the gravitational radius defined byGM/r r =G G

, is the mean square velocity of the particles, G22GM /FWF Av S
is the gravitational constant, and M is the total mass of the
system. These physical quantities may be translated to obser-
vational ones through the definition of some kinematical-
structural coefficients ( ) which may or may not be con-C , Cr v

stants among galaxies: and ;22j = C Av S r = C r I = [(M/2) /0 e r G ev

. M/L is the mass-luminosity relation for the sys-2 21pr ] (M/L)e

tem; re is its effective radius, that is the radius that contains
half of its total luminosity: ; j0 its central pro-L(! r ) = L /2e tot

jected velocity dispersion, that is the mean square projected
velocity of stars at the galaxy center (measured inside a slit of
finite projected width); and is the mean surface2I = L(! r )/pre e e

brightness inside re in linear units. Inserting these equations
into the virial relation, one finds , where de-2 21r = C j I Ce FP 0 e FP

pends on the mass-luminosity relation and on the coefficients
defined above ( ). In contrast, what one observes is thatC , Cr v
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, with , , for elliptical galaxies ob-A Br ∝ j I A ∼ 1.53 B ∼ 20.79e 0 e

served in the near-infrared (Pahre et al. 1998). The reasons for
the deviation of the observed relationship as compared to the
virial theorem are not well established. One may postulate a
systematic variation of the structural coefficients (galaxies
would form a nonhomologous family of objects; Capelato, de
Carvalho, & Carlberg 1995, 1997; Hjorth & Madsen 1995) or
even a systematic trend of the mass-to-light ratio with galaxy
mass: (e.g., Dressler et al. 1987).aM/L ∝ M

However, it should be noted that elliptical galaxies, as any
other collapsed structures, are probably surrounded by massive
dark matter halos. The observed FP relations, on the other hand,
arise from the observed (i.e., baryonic) component of these
systems. It seems thus natural to ask how the equilibrium state
of the baryonic component under the influence of its massive
halo would modify the simple one-component virial theorem.
In fact, attempts to construct two-component models can be
found in the recent literature. For instance, Ciotti et al. (1996)
indicate that the FP tilt could be explained by massive extended
dark matter halos embedding the luminous matter of galaxies
with the following caveat: a nonrealistic fine-tuning of the
luminous–to–dark matter distributions would be required in
order to explain the small scatter of the FP correlations. On
the other hand, preliminary results of Kritsuk (1997) suggest
that the FP for elliptical galaxies and, also, the observed de-
viation of dwarf spheroidal galaxies from it may follow from
the dynamical equilibrium condition in the framework of a two-
component model.

Attempting to visualize the physical properties of virialized
stellar systems of various scales into an integrated framework
(the k-space; see Bender, Burstein, & Faber 1992), Burstein et
al. (1997, hereafter BBFN97) concluded that globular clusters,
galaxies, groups of galaxies, and clusters of galaxies also show
systematic trends in their observed properties, populating what
they called a “cosmic metaplane” in their parameter space. This
metaplane, also tilted with respect to the simple virial expec-
tation, was interpreted as a combination of FP-like tilts asso-
ciated to the various stellar systems, possibly reflecting their
different stellar population and dissipation histories. However,
under this interpretation, a fine-tuning mechanism for the var-
iation of M/L with mass, for every stellar system, also had to
be invoked in order to preserve the striking appearance of the
metaplane (see also Schaeffer et al. 1993). Also, their analysis
made evident a “zone of exclusion” in which no stellar system
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could be found. This raises the question of which formation
process would generate such a trend and the mechanisms re-
sponsible for producing the metaplane itself.

In this Letter we tackle these questions by starting from the
hypothesis that self-gravitating stellar systems in the universe
are embedded in dark halos. As a consequence, the strict virial
theorem must be replaced by a new equilibrium equation that
takes explicitly into account the gravitational potential pro-
duced by the massive halo in which the luminous component
is embedded. With this assumption, we present an alternative
model that may naturally explain the issues discussed above.
Our Letter is organized as follows: in § 2, we discuss the virial
theorem for two-component systems; in § 3, we apply it to
observational data; and in § 4, we discuss some of the impli-
cations of our results.

2. THE TWO-COMPONENT VIRIAL THEOREM

The scalar virial theorem for the baryonic component of a
stellar system (component 2) in steady state equilibrium em-
bedded in its dark matter halo (component 1) may be readily
deduced from the Jeans equation by assuming that, in addition
to its self-potential, it is also subjected to the external potential
produced by the dark matter (see, e.g., Binney & Tremaine
1987; see also Limber 1959; Spitzer 1969; Smith 1980). In this
case, a new term is added to the gravitational energy of the
system due to the interaction of the two components. Assuming
spherical symmetry, we may write the gravitational energy of
luminous component W2 as

` `

r (r)M (r) r (r)M (r)2 2 2 1W = 2G dV 2 G dV, (1)2 E Er r
0 0

where is the total mass of the m-component within theM (r)m

radius r. If we now further assume that the dark matter
halo—component 1—is more extended than the baryonic com-
ponent, having a not too steep density profile within the interior
region containing the luminous component, then we may ap-
proximate the second integral, which gives the interaction en-
ergy, by

`

r (r)M (r)2 1W { 2G dV21 E r
0

`

34p r (r)r2∼ 2 r G dV0, 1 E3 r
0

4p 2= 2 r GM Ar S, (2)0, 1 2 23

where is the mean density of the dark matter halo withinr0, 1

the region containing the luminous component and

2r r (r)dV∫ 22Ar S { . (3)2
r (r)dV∫ 2

Thus, the virial theorem for the collapsed baryonic component,

, may be written as2K 1 W = 02 2

GM 4p22 2Av S = 1 Gr Ar S, (4)0, 1 22 r 3G,2

where is the gravitational radius of the second component.rG, 2

We see that in the presence of an extended dark matter halo,
the virial theorem gets an extra term on its right-hand side,
which accounts for the interaction with the extended dark mat-
ter halo (this is also known as the “Limber effect”). As we will
see in the next section, this term is essential for our under-
standing of the systematic trends of the observed properties of
the stellar systems we discussed before. In terms of the ob-
servational quantities, the modified virial theorem writes as

2 ∗ 2j = C (I r 1 br ), (5)0 e e e

where

M∗C = 2pGC Cr v ( )L 2

and

212 R M
b = r , (6)0, 1( )3 C Lr 2

with .2 2R = Ar S /r2 e

Notice that in these equations all the structural coefficients
as well as M/L refer to the baryonic component. Parameter b
has dimension of a luminosity density, whereas C* has di-
mension of a less intuitive quantity (i.e., GM/L).

Equation (6) is specially interesting, since it relates the pa-
rameter b to the central density of the dark matter halo. We
numerically analyzed various equilibrium models (specifically,
Jaffe, King, and Sersic models; see Binney & Tremaine 1987;
Ciotti 1991; Ciotti & Lanzoni 1997) and found that C C ∼r v

, whereas varies significantly, depending on the models:0.2 R/Cr

for King or Jaffe models and ∼10–60 for theR/C ∼ 10–25r

Sersic models. We adopted as a typical value. It isR/C ∼ 20r

important to stress that for galaxies this approximation can
introduce a factor of 2 difference in the parameter b.

3. APPLYING THE TWO-COMPONENT VIRIAL THEOREM

We will apply the two-component virial theorem (2-VT) in
the context of the k-space parameter framework. This will allow
us to directly compare the 2-VT predictions with the extensive
data provided by BBFN97. In this coordinate system the FP
is seen edge-on, projected on the ( )-plane, and the 2-VTk , k1 3

(eq. [5]) can be expressed as

∗log C 1
qk = 1 log (1 1 b10 ), (7)3 Î Î3 3

where

Îk 2 3k1 2 Ie
q { = 2 log , (8)Î r2 e
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Fig. 1.—Projection in the k-space of the data presented by BBFN97. The symbols are for groups dominated by elliptical galaxies (open circles), elliptical
galaxies ( filled circles), spiral galaxies (open squares), clusters of galaxies ( filled squares), globular clusters (stars), and groups dominated by spiral galaxies
(triangles). (a) , where the dotted lines indicate the variation of k2 from 22.5 to 5.0. For both projections, the 2-VT model is constrained by ∗k # k C = 8.281 3

and . (b) The projection , where the dotted lines represent different values of k3 as indicated.b = 200 k # k1 2

that is, q is measuring the central luminosity density of the
stellar systems.

From equations (7) and (8) we see that the 2-VT defines a
surface in the k-space whose main characteristics may be best
viewed through the curve defined by its intersection with the
( )-plane, perpendicular to the ( )-plane. A brief anal-k , q k ,k3 1 2

ysis of equation (7) shows that it intercepts the k3-axis at
. If there were no dark halo, , recovering the∗ Îlog C / 3 b = 0

usual one-component virial theorem, . Departure fromk = cte3

this horizontal line at a given q depends on the term b10q and
thus on the density of the dark halo. For it tends toqb10 k 1
a straight line with a fixed slope of intercepting theÎ1/ 6
k3-axis at . That is, the 2-VT predicts an asymp-∗ Îlog (C b)/ 3
totic, characteristic, fixed tilt relative to the one-component
virial theorem. Notice that, within a factor depending on the
structural coefficients of the baryonic component, the value of
the mean central density of the dark matter halo is given by
this intercept.

In Figure 1a, we plot the data on the k-space, projected on
the ( )-plane for self-gravitating stellar systems spanningk , k1 3

all scales—from globular clusters to rich galaxy clus-
ters—using data presented in BBFN97. The 2-VT curves, given
by and , are shown as dotted lines for the∗C = 8.28 b = 200
various ranges of the k parameters. This figure shows the strik-
ing compatibility of the cosmic metaplane with the theoretical
predictions of the two-component virial theorem—specifically,
the fixed asymptotic tilt relative to the strict virial theorem.

We establish the 2-VT relation (eq. [7]) by assuming two
different hypotheses about the mass-luminosity relation of the
baryonic component: (1) that its value is about the same as
found for the globular clusters, which seems reasonable since
these systems are very well described by the one-component
virial theorem, that is (see Bellazzini 1998); andqglob clustb10 K 1
(2) by adjusting the value of the k3 intercept [that is, (M/L)2]

to a maximum value still giving a reasonable fit to the groups
and clusters of galaxies. In doing that, we were attempting to
take into account the presence of nonstellar baryonic mass and
the remaining galactic dark halos in these systems.

We find for case 1 ( ), a value that∗(M/L) ∼ 1.6 C = 8.282

agrees fairly well with those for globular clusters (e.g., Pryor
& Meylan 1993). For case 2, gives .∗C = 39.2 (M/L) ∼ 7.42

The central densities of the dark matter halos were estimated
after adjusting the b parameter. For the (elliptical) galaxies we
found M, pc23 ( ), whereas for the22r ∼ 2.3 # 10 b = 2000, 1

elliptical-dominated groups and clusters of galaxies, r ∼0,1

M, pc23 ( for case 1 and for265.8 # 10 b = 0.20 b = 0.004
case 2). The corresponding values for the spiral galaxies and
for the spiral-dominated groups are about a factor 2–3 smaller
due to the fact that these systems appear slightly displaced
toward larger values of q.

In Figure 1b we clearly see that the points do not fill the
space continuously. On the contrary, they are arranged in some
bands defined by specific values of k3, which are related to
specific values of w through equation (7). The parameter w
rules the luminosity density in the systems, and hence it is
associated with their dissipation histories and the epoch when
the collapse happened (i.e., the density fluctuation spectrum).
Thus, in the context of a hierarchical clustering scenario,
smaller systems collapse before and are more concentrated,
presenting higher luminosity densities (w more negative); while
larger objects, collapsed later, present lower luminosity den-
sities (w more positive). The scatter in the perpendicular di-
rection to w probably reflects a change in mass which produces
the bands seen in Figure 1b. The gaps between different objects
on the ( )-plane were first noted by BBFN97, but now wek , k1 2

have quantified this feature by the parameter w. A full account
of the role of the parameter w is beyond the scope of the present
Letter.
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4. DISCUSSION

This work is based on the hypothesis that self-gravitating,
equilibrium stellar systems in general possess an extended dark
matter halo. In order to describe their equilibrium state, a mod-
ified, two-component virial theorem, which predicts the exis-
tence of a fundamental surface, must be taken into account.
We found remarkable compatibility of this hypothesis with the
observed properties of a great range of stellar systems. Partic-
ularly, the cosmic metaplane, first discussed by BBFN97 as an
ensemble of interrelated fundamental planes, is shown to rea-
sonably follow the fundamental surface here derived.

Furthermore, our analysis reinforces the view that the FP
relations should arise as a correction to the observed (luminous)
parameter relations for the presence of the dark (unseen) matter
surrounding these systems. However, as pointed out by Ciotti
et al. (1996), this does not completely solve the FP problem,
since a fine-tuning of the dark–to–luminous matter distributions
is required in order to explain the small scatter of the FP cor-

relations. Although no such mechanism has been proposed or
known up to now, there is at least one piece of evidence that
it may exist, as evidenced by the extremely small scatter of
the FP solutions displayed by the end products of hierarchical
merger simulations discussed by Capelato et al. (1995, 1997).
This would suggest that indeed the fine-tuning mechanism is
related to the hierarchical scenario of formation of galaxies.
Alternatively, an explanation for the FP, avoiding fine-tuning
of any type, is given by our model, which includes a small
curvature in the FP correlation. However, giving the clustering
scale represented by elliptical galaxies, the scatter of the FP
should be known with much higher accuracy.
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