4,696 research outputs found
Canard Cycles and Poincar\'e Index of Non-Smooth Vector Fields on the Plane
This paper is concerned with closed orbits of non-smooth vector fields on the
plane. For a subclass of non-smooth vector fields we provide necessary and
sufficient conditions for the existence of canard kind solutions. By means of a
regularization we prove that the canard cycles are singular orbits of singular
perturbation problems which are limit periodic sets of a sequence of limit
cycles. Moreover, we generalize the Poincar\'e Index for non-smooth vector
fields.Comment: 20 pages, 25 figure
Odynophagia and neck pain after exercise
info:eu-repo/semantics/publishedVersio
Dispersal of engineered male Aedes aegypti mosquitoes
BACKGROUND:Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. METHODOLOGY/PRINCIPAL FINDINGS:The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m). CONCLUSIONS/SIGNIFICANCE:Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti
Aurora A triggers Lgl cortical release during symmetric division to control planar spindle orientation
Mitotic spindle orientation is essential to control cell-fate specification and epithelial architecture. The tumor suppressor Lgl localizes to the basolateral cortex of epithelial cells, where it acts together with Dlg and Scrib to organize apicobasal polarity. Dlg and Scrib also control planar spindle orientation, but how the organization of polarity complexes is adjusted to control symmetric division is largely unknown. Here, we show that the Dlg complex is remodeled during Drosophila follicular epithelium cell division, when Lgl is released to the cytoplasm. Lgl redistribution during epithelial mitosis is reminiscent of asymmetric cell division, where it is proposed that Aurora A promotes aPKC activation to control the localization of Lgl and cell-fate determinants. We show that Aurora A controls Lgl localization directly, triggering its cortical release at early prophase in both epithelial and S2 cells. This relies on double phosphorylation within the putative aPKC phosphorylation site, which is required and sufficient for Lgl cortical release during mitosis and can be achieved by a combination of aPKC and Aurora A activities. Cortical retention of Lgl disrupts planar spindle orientation, but only when Lgl mutants that can bind Dlg are expressed. Hence, our work reveals that Lgl mitotic cortical release is not specifically linked to the asymmetric segregation of fate determinants, and we propose that Aurora A activation breaks the Dlg/Lgl interaction to allow planar spindle orientation during symmetric division via the Pins (LGN)/Dlg pathway.We thank J. Knoblich, D. St Johnston, D. Bilder, D. Glover, S. Brogna, R. Martinho, H. Maiato, D. Bergstralh, and the Bloomington Stock Center for fly stocks and reagents. This work was funded by FEDER funds through the Operational Competitiveness Programme COMPETE and by National Funds through FCT (Fundação para a Ciência e a Tecnologia) under the project FCOMP-01-0124-FEDER-019738 (PTDC/BIA-BCM/120132/2010), which also supported fellowships to C.C. and S.M. E.M. was funded by a Marie Curie-IEF and currently holds a FCT Investigator position
Cadherins Glycans in Cancer: Sweet Players in a Bitter Process
Cadherins are key components in tissue morphogenesis and architecture, contributing to the establishment of cohesive cell adhesion. Reduced cellular adhesiveness as a result of cadherin dysfunction is a defining feature of cancer. During tumor development and progression, major changes in the glycan repertoire of cancer cells take place, affecting the stability, trafficking, and cell-adhesion properties of cadherins. Importantly, the different glycoforms of cadherins are promising biomarkers, with potential clinical application to improve the management of patients, and constitute targets for the development of new therapies. This review discusses the most recent insights on the impact of glycan structure on the regulation of cadherin function in cancer, and provides a perspective on how cadherin glycans constitute tumor biomarkers and potential therapeutic targets.IPATIMUP integrates the I3S Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação). This work was financed by FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through the FCT in the framework of the project ‘Institute for Research and Innovation in Health Sciences’ (POCI-01-0145-FEDER-007274), PTDC/DTP-PIC/0560/2014, and PTDC/BBB-EBI/0567/2014. S.C. also acknowledges funding from the FCT (SFRH/BD/77386/2011)
Helicobacter pylori cag pathogenicity island-positive strains induce syndecan-4 expression in gastric epithelial cells
Helicobacter pylori is recognized as the main cause of gastritis and is associated with gastric carcinogenesis. Syndecan-4 represents the major source of heparan sulfate (HS) in the gastric cells. HS proteoglycans expressed on the cell surface constitute targets for H. pylori at the early stage of infection. The aim of this study was to determine whether H. pylori induction of syndecan-4 expression is affected by the virulence characteristics of the infecting strain, namely the cytotoxic-associated gene (cag) pathogenicity island (PAI). We observed that individuals infected with highly pathogenic H. pylori strains express syndecan-4 in the foveolar epithelium of the gastric mucosa. The association between the cagPAI status of the infecting strain and syndecan-4 expression was further demonstrated by infection of gastric epithelial cell lines with a panel of cagPAI+ and cagPAI- H. pylori strains, showing that expression of syndecan-4 was significantly increased in response to infection with the highly pathogenic strains. Moreover, infection of gastric cells with cagA and cagE mutant strains further confirmed that syndecan-4 induction is dependent on an intact cagPAI. The present study shows that highly pathogenic H. pylori strains induce syndecan-4 expression, both in human gastric mucosa and in gastric cell lines, in a cagPAI-dependent manner. © 2009 Federation of European Microbiological Societies
Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes
The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission
- …