4,864 research outputs found
Recommended from our members
Disrupted GABAergic facilitation of working memory performance in people with schizophrenia.
ObjectivesGamma-Amiobutyric acid (GABA) is a primary inhibitory neurotransmitter that facilitates neural oscillations that coordinate neural activity between brain networks to facilitate cognition. The present magnetic resonance spectroscopy (MRS) study tests the hypothesis that GABAergic facilitation of working memory is disrupted in people with schizophrenia (PSZ).Methods51 healthy participants and 40 PSZ from the UC Davis Early Psychosis Program performed an item and temporal order working memory (WM) task and underwent resting MRS to measure GABA and glutamate concentrations in dorsolateral prefrontal (DLPFC) and anterior cingulate (ACC) regions of interest. MRS was acquired on a 3 Tesla Siemens scanner and GABA and glutamate concentrations were referenced to creatine. Percent correct on the WM task indexed performance and correlation coefficients examined GABAergic or Glutamatergic facilitation of WM, with Fisher's Z transformation testing for group differences.ResultsThere were no group differences in GABA or glutamate concentrations, but WM correlations were reversed between groups. In patients, higher DLPFC GABA was associated with worse rather than better WM performance. This pattern was not observed for glutamate or in the ACC. Although under-powered, there was no indication of medication effects.Conclusions and relevanceResults cannot be explained by group differences in DLPFC GABA or glutamate concentrations but, instead, indicate that schizophrenia disrupts the GABAergic facilitation of WM seen in healthy individuals. Results appear to parallel post mortem findings in suggesting that schizophrenia alters the distribution of different classes of GABAergic interneurons rather than producing a general deficit across the total population of neurons
Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.
ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive
Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich
The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches (Struthio camelus) possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development
Practical Evaluation of Lempel-Ziv-78 and Lempel-Ziv-Welch Tries
We present the first thorough practical study of the Lempel-Ziv-78 and the
Lempel-Ziv-Welch computation based on trie data structures. With a careful
selection of trie representations we can beat well-tuned popular trie data
structures like Judy, m-Bonsai or Cedar
Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation
Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates
An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints
In this work, we introduce an algorithm to compute the derivatives of
physical observables along the constrained subspace when flexible constraints
are imposed on the system (i.e., constraints in which the hard coordinates are
fixed to configuration-dependent values). The presented scheme is exact, it
does not contain any tunable parameter, and it only requires the calculation
and inversion of a sub-block of the Hessian matrix of second derivatives of the
function through which the constraints are defined. We also present a practical
application to the case in which the sought observables are the Euclidean
coordinates of complex molecular systems, and the function whose minimization
defines the constraints is the potential energy. Finally, and in order to
validate the method, which, as far as we are aware, is the first of its kind in
the literature, we compare it to the natural and straightforward
finite-differences approach in three molecules of biological relevance:
methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio
- …