31,008 research outputs found

    Techniques for studying gravity waves and turbulence: Horizontal, vertical and temporal resolution needed

    Get PDF
    One of the most important atmospheric measurements that is needed is a measure of the gravity-wave spectrum. The MST radar has been investigated as means to measure the temporal resolution required to determine gravity-wave oscillations. The required vertical and horizontal resolution is dependent on the particular part of the gravity wave spectrum that is analyzed. Horizontal spacing is also discussed

    Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    Get PDF
    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations among the more than 2,000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using Systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70±0.08MJup7.70\pm0.08M_{Jup} object orbiting every 237.7±0.1d237.7\pm0.1d around a 1.2M⊙1.2M_\odot primary and 0.51M⊙0.51M_\odot secondary in an 18.6d orbit. A dynamical integration over 10710^7 years suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.Comment: 8 pages, 7 figures, Accepted for publication in MNRA

    Altered brainstem responses to modafinil in schizophrenia: implications for adjunctive treatment of cognition.

    Get PDF
    Candidate pro-cognitive drugs for schizophrenia targeting several neurochemical systems have consistently failed to demonstrate robust efficacy. It remains untested whether concurrent antipsychotic medications exert pharmacodynamic interactions that mitigate pro-cognitive action in patients. We used functional MRI (fMRI) in a randomized, double-blind, placebo-controlled within-subject crossover test of single-dose modafinil effects in 27 medicated schizophrenia patients, interrogating brainstem regions where catecholamine systems arise to innervate the cortex, to link cellular and systems-level models of cognitive control. Modafinil effects were evaluated both within this patient group and compared to a healthy subject group. Modafinil modulated activity in the locus coeruleus (LC) and ventral tegmental area (VTA) in the patient group. However, compared to the healthy comparison group, these effects were altered as a function of task demands: the control-independent drug effect on deactivation was relatively attenuated (shallower) in the LC and exaggerated (deeper) in the VTA; in contrast, again compared to the comparison group, the control-related drug effects on positive activation were attenuated in LC, VTA and the cortical cognitive control network. These altered effects in the LC and VTA were significantly and specifically associated with the degree of antagonism of alpha-2 adrenergic and dopamine-2 receptors, respectively, by concurrently prescribed antipsychotics. These sources of evidence suggest interacting effects on catecholamine neurons of chronic antipsychotic treatment, which respectively increase and decrease sustained neuronal activity in LC and VTA. This is the first direct evidence in a clinical population to suggest that antipsychotic medications alter catecholamine neuronal activity to mitigate pro-cognitive drug action on cortical circuits

    Quantum Algorithm for the Collision Problem

    Get PDF
    In this note, we give a quantum algorithm that finds collisions in arbitrary r-to-one functions after only O((N/r)^(1/3)) expected evaluations of the function. Assuming the function is given by a black box, this is more efficient than the best possible classical algorithm, even allowing probabilism. We also give a similar algorithm for finding claws in pairs of functions. Furthermore, we exhibit a space-time tradeoff for our technique. Our approach uses Grover's quantum searching algorithm in a novel way.Comment: 8 pages, LaTeX2

    A smart environment for biometric capture

    No full text
    The development of large scale biometric systems require experiments to be performed on large amounts of data. Existing capture systems are designed for fixed experiments and are not easily scalable. In this scenario even the addition of extra data is difficult. We developed a prototype biometric tunnel for the capture of non-contact biometrics. It is self contained and autonomous. Such a configuration is ideal for building access or deployment in secure environments. The tunnel captures cropped images of the subject's face and performs a 3D reconstruction of the person's motion which is used to extract gait information. Interaction between the various parts of the system is performed via the use of an agent framework. The design of this system is a trade-off between parallel and serial processing due to various hardware bottlenecks. When tested on a small population the extracted features have been shown to be potent for recognition. We currently achieve a moderate throughput of approximate 15 subjects an hour and hope to improve this in the future as the prototype becomes more complete

    Relativistic models of magnetars: structure and deformations

    Get PDF
    We find numerical solutions of the coupled system of Einstein-Maxwell's equations with a linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star. In our study, magnetic fields having both poloidal and toroidal components are considered, and higher order multipoles are also included. We evaluate the deformations induced by different field configurations, paying special attention to those for which the star has a prolate shape. We also explore the dependence of the stellar deformation on the particular choice of the equation of state and on the mass of the star. Our results show that, for neutron stars with mass M = 1.4 Msun and surface magnetic fields of the order of 10^15 G, a quadrupole ellipticity of the order of 10^(-6) - 10^(-5) should be expected. Low mass neutron stars are in principle subject to larger deformations (quadrupole ellipticities up to 10^(-3) in the most extreme case). The effect of quadrupolar magnetic fields is comparable to that of dipolar components. A magnetic field permeating the whole star is normally needed to obtain negative quadrupole ellipticities, while fields confined to the crust typically produce positive quadrupole ellipticities.Comment: 25 pages, 9 figures, submitted to MNRA

    Symplectic structure for elastic and chiral conducting cosmic string models

    Full text link
    This article is based on the covariant canonical formalism and corresponding symplectic structure on phase space developed by Witten, Zuckerman and others in the context of field theory. After recalling the basic principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string models. These models describe current carrying cosmic strings evolving in an arbitrary curved background spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability property of the chiral string is clarified.Comment: 18 page

    Reusable Agena study. Volume 2: Technical

    Get PDF
    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined

    Curvature Corrections to Dynamics of Domain Walls

    Full text link
    The most usual procedure for deriving curvature corrections to effective actions for topological defects is subjected to a critical reappraisal. A logically unjustified step (leading to overdetermination) is identified and rectified, taking the standard domain wall case as an illustrative example. Using the appropriately corrected procedure, we obtain a new exact (analytic) expression for the corresponding effective action contribution of quadratic order in the wall width, in terms of the intrinsic Ricci scalar RR and the extrinsic curvature scalar KK. The result is proportional to cK2−RcK^2-R with the coefficient given by c≃2c\simeq 2. The resulting form of the ensuing dynamical equations is obtained in terms of the second fundamental form and the Dalembertian of its trace, K. It is argued that this does not invalidate the physical conclusions obtained from the "zero rigidity" ansatz c=0c=0 used in previous work.Comment: 19 pages plain TeX, 2 figures include
    • 

    corecore