803 research outputs found

    Vector bundles on the projective line and finite domination of chain complexes

    Get PDF
    Finitely dominated chain complexes over a Laurent polynomial ring in one indeterminate are characterised by vanishing of their Novikov homology. We present an algebro-geometric approach to this result, based on extension of chain complexes to sheaves on the projective line. We also discuss the K-theoretical obstruction to extension.Comment: v1: 11 page

    Machine-Related Backgrounds in the SiD Detector at ILC

    Full text link
    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+ e- interactions are presented in this paper for the SiD detector.Comment: 29 pages, 34 figures, 7 table

    Generating droplets in two-dimensional Ising spin glasses by using matching algorithms

    Full text link
    We study the behavior of droplets for two dimensional Ising spin glasses with Gaussian interactions. We use an exact matching algorithm which enables study of systems with linear dimension L up to 240, which is larger than is possible with other approaches. But the method only allows certain classes of droplets to be generated. We study single-bond, cross and a category of fixed volume droplets as well as first excitations. By comparison with similar or equivalent droplets generated in previous works, the advantages but also the limitations of this approach are revealed. In particular we have studied the scaling behavior of the droplet energies and droplet sizes. In most cases, a crossover of the data can be observed such that for large sizes the behavior is compatible with the one-exponent scenario of the droplet theory. Only for the case of first excitations, no clear conclusion can be reached, probably because even with the matching approach the accessible system sizes are still too small.Comment: 11 pages, 16 figures, revte

    Effect of Dynamical SU(2) Gluons to the Gap Equation of Nambu--Jona-Lasinio Model in Constant Background Magnetic Field

    Get PDF
    In order to estimate the effect of dynamical gluons to chiral condensate, the gap equation of SU(2) gauged Nambu--Jona-Lasinio model, under a constant background magnetic field, is investigated up to the two-loop order in 2+1 and 3+1 dimensions. We set up a general formulation allowing both cases of electric as well as magnetic background field. We rely on the proper time method to maintain gauge invariance. In 3+1 dimensions chiral symmetry breaking (χ\chiSB) is enhanced by gluons even in zero background magnetic field and becomes much striking as the background field grows larger. In 2+1 dimensions gluons also enhance χ\chiSB but whose dependence on the background field is not simple: dynamical mass is not a monotone function of background field for a fixed four-fermi coupling.Comment: 20 pages, 5 figure

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review

    Systematic study of trace radioactive impurities in candidate construction materials for EXO-200

    Full text link
    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.Comment: 32 pages, 6 figures. Expanded introduction, added missing table entry. Accepted for publication in Nucl. Instrum. Meth.

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
    • …
    corecore