1,397 research outputs found

    Are exoplanetesimals differentiated?

    Get PDF
    Metals observed in the atmospheres of white dwarfs suggest that many have recently accreted planetary bodies. In some cases, the compositions observed suggest the accretion of material dominantly from the core (or the mantle) of a differentiated planetary body. Collisions between differentiated exoplanetesimals produce such fragments. In this work, we take advantage of the large numbers of white dwarfs where at least one siderophile (core-loving) and one lithophile (rock-loving) species have been detected to assess how commonly exoplanetesimals differentiate. We utilise N-body simulations that track the fate of core and mantle material during the collisional evolution of planetary systems to show that most remnants of differentiated planetesimals retain core fractions similar to their parents, whilst some are extremely core-rich or mantle-rich. Comparison with the white dwarf data for calcium and iron indicates that the data are consistent with a model in which 666+4%66^{+4}_{-6}\% have accreted the remnants of differentiated planetesimals, whilst 315+5%31^{+5}_{-5}\% have Ca/Fe abundances altered by the effects of heating (although the former can be as high as 100%100\%, if heating is ignored). These conclusions assume pollution by a single body and that collisional evolution retains similar features across diverse planetary systems. These results imply that both collisions and differentiation are key processes in exoplanetary systems. We highlight the need for a larger sample of polluted white dwarfs with precisely determined metal abundances to better understand the process of differentiation in exoplanetary systems

    Deglacial to postglacial palaeoenvironments of the Celtic Sea: Lacustrine conditions versus a continuous marine sequence

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Recent work on the last glaciation of the British Isles has led to an improved understanding of the nature and timing of the retreat of the British-Irish Ice Sheet (BIIS) from its southern maximum (Isles of Scilly), northwards into the Celtic and Irish seas. However, the nature of the deglacial environments across the Celtic Sea shelf, the extent of subaerial exposure and the existence (or otherwise) of a contiguous terrestrial linkage between Britain and Ireland following ice retreat remains ambiguous. Multiproxy research, based on analysis of 12 BGS vibrocores from the Celtic Deep Basin (CDB), seeks to address these issues. CDB cores exhibit a shell-rich upward fining sequence of Holocene marine sand above an erosional contact cut in laminated muds with infrequent lonestones. Molluscs, in situ Foraminifera and marine diatoms are absent from the basal muds, but rare damaged freshwater diatoms and foraminiferal linings occur. Dinoflagellate cysts and other non-pollen palynomorphs evidence diverse, environmentally incompatible floras with temperate, boreal and Arctic glaciomarine taxa co-occurring. Such multiproxy records can be interpreted as representing a retreating ice margin, with reworking of marine sediments into a lacustrine basin. Equally, the same record may be interpreted as recording similar conditions within a semi-enclosed marine embayment dominated by meltwater export and deposition of reworked microfossils. As assemblages from these cores contrast markedly with proven glaciomarine sequences from outside the CDB, a glaciolacustrine interpretation is favoured for the laminated sequence, truncated by a Late Weichselian transgressive sequence fining upwards into fully marine conditions. Reworked rare intertidal molluscs from immediately above the regional unconformity provide a minimum date c.13.9cal. ka BP for commencement of widespread marine erosion. Although suggestive of glaciolacustrine conditions, the exact nature and timing of laminated sediment deposition within the CDB, and the implications this has on (pen)insularity of Ireland following deglaciation, remain elusive. © 2013 The Boreas Collegium.Funded by NERC PhD research studentship grant. Grant Number: GT04/97/289/ES; two NSERC-funded radiocarbon allocations. Grant Numbers: 746/0898, 814/0999; MacEwan Universit

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    The second data release of the INT Photometric Ha Survey of the Northern Galactic Plane (IPHAS DR2)

    Get PDF
    The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800 deg2 imaging survey covering Galactic latitudes |b| < 5° and longitudes ℓ = 30°–215° in the r, i, and Hα filters using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92 per cent of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec pixel−1) and to a mean 5σ depth of 21.2 (r), 20.0 (i), and 20.3 (Hα) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (root mean square) and recommend a series of quality criteria to select accurate data from the catalogue. Finally, we demonstrate the ability of the catalogue's unique (r − Hα, r − i) diagram to (i) characterize stellar populations and extinction regimes towards different Galactic sightlines and (ii) select and quantify Hα emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys

    The prevalence and experience of oral diseases in Adelaide nursing home residents

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: The twenty-first century will see the evolution of a population of dentate older Australians with dental needs very different from those of older adults in past years. This study provided comprehensive information concerning oral disease prevalence in older South Australian nursing home residents. Methods: This paper presents cross-sectional baseline results. Results: Most of the 224 residents, from seven randomly selected nursing homes, were functionally dependent, medically compromised, cognitively impaired and behaviourally difficult older adults who presented many complex challenges to carers and to dental professionals. Two-thirds (66 per cent) were edentulous with many dental problems and treatment needs. Dentate residents had a mean of 11.9 teeth present, higher than previously reported. The prevalence and experience of coronal and root caries and plaque accumulation was very high in dentate residents; especially males, those admitted more than three years previously, those who ate fewer food types and those who were severely cognitively impaired. These residents had more retained roots, decayed teeth and missing teeth, and fewer filled teeth when compared with data for community-dwelling older adults. Conclusions: This study highlighted the poor oral health status of these nursing home residents and the great impact of dementia on their high levels of oral diseases.JM Chalmers, C Hodge, JM Fuss, AJ Spencer, KD Carte

    A New Evolutionary Algorithm-Based Home Monitoring Device for Parkinson’s Dyskinesia

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative movement disorder. Although there is no cure, symptomatic treatments are available and can significantly improve quality of life. The motor, or movement, features of PD are caused by reduced production of the neurotransmitter dopamine. Dopamine deficiency is most often treated using dopamine replacement therapy. However, this therapy can itself lead to further motor abnormalities referred to as dyskinesia. Dyskinesia consists of involuntary jerking movements and muscle spasms, which can often be violent. To minimise dyskinesia, it is necessary to accurately titrate the amount of medication given and monitor a patient’s movements. In this paper, we describe a new home monitoring device that allows dyskinesia to be measured as a patient goes about their daily activities, providing information that can assist clinicians when making changes to medication regimens. The device uses a predictive model of dyskinesia that was trained by an evolutionary algorithm, and achieves AUC>0.9 when discriminating clinically significant dyskinesia

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    CNV-seq, a new method to detect copy number variation using high-throughput sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations.</p> <p>Results</p> <p>Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads.</p> <p>Conclusion</p> <p>Simulation of various sequencing methods with coverage between 0.1× to 8× show overall specificity between 91.7 – 99.9%, and sensitivity between 72.2 – 96.5%. We also show the results for assessment of CNV between two individual human genomes.</p

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    corecore