

Deglacial to postglacial palaeoenvironments of the Celtic Sea: lacustrine conditions versus a continuous marine sequence

Journal:	Boreas
Manuscript ID:	BOR-011-2013
Manuscript Type:	Original Article
Date Submitted by the Author:	21-Jan-2013
Complete List of Authors:	Furze, Mark; MacEwan University, Earth & Planetary Sciences Division, Department of Physical Science Scourse, James; Bangor University, School of Ocean Sciences; Bangor University, School of Ocean Sciences Pienkowski, Anna; Bangor University, School of Ocean Sciences Marret, Fabienne; University of Liverpool, Geography Hobbs, William; Science Museum of Minnesota, St. Croix Watershed Research Station Carter, Rosemary; Bangor University, School of Ocean Sciences Long, Brian; Bangor University, School of Ocean Sciences
Keywords:	Celtic Deep Basin, NW European continental shelf, sea-level, molluscs, microfossils, glacimarine, glacilacustrine

SCHOLARONE[™] Manuscripts

Boreas

1	Deglacial to postglacial palaeoenvironments of the Celtic Sea: lacustrine conditions versus a
2	continuous marine sequence
3	
4	MARK F.A. FURZE, JAMES D. SCOURSE, ANNA J. PIEŃKOWSKI, FABIENNE MARRET, WILLIAM O.
5	HOBBS, ROSEMARY A. CARTER, AND BRIAN T. LONG
6	
7	Mark F.A. Furze (e-mail: furzem@macewan.ca), Earth & Planetary Sciences Division, Department of
8	Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada; James D. Scourse, Anna
9	J. Pieńkowski, Rosemary A. Carter, and Brian T. Long, School of Ocean Sciences, College of Natural
10	Sciences, Bangor University, Menai Bridge LL59 5AB, UK; Fabienne Marret, School of Environmental
11	Sciences University of Liverpool, Liverpool L69 7ZT, UK; William O. Hobbs, St. Croix Watershed
12	Research Station, Science Museum of Minnesota, 16910 152 nd Street North Marine on St. Croix, MN
13	55047, USA

14	Abstract
----	----------

15	Recent work on the last glaciation of the British Isles has led to an improved understanding of the
16	nature and timing of the retreat of the British-Irish Ice Sheet (BIIS) from its southern maximum (Isles
17	of Scilly), northwards into the Celtic and Irish seas. However, the nature of the deglacial
18	environments across the Celtic Sea shelf, the extent of subaerial exposure, and the existence (or
19	otherwise) of a contiguous terrestrial linkage between Britain and Ireland following ice retreat
20	remains ambiguous. Multiproxy research, based on the analysis of BGS vibrocores from the Celtic
21	Deep Basin (CDB), seeks to address these issues. CDB cores exhibit a shell-rich upward fining
22	sequence of Holocene marine sand above an erosional contact cut in laminated muds with
23	infrequent lonestones. Molluscs, in situ foraminifera, and marine diatoms are absent from the basal
24	muds, but rare damaged freshwater diatoms and foraminiferal linings occur. Dinoflagellate cysts and
25	non-pollen palynomorphs evidence diverse, environmentally incompatible floras with temperate,
26	boreal, and Arctic glacimarine taxa co-occurring. Such multiproxy records can be interpreted as
27	representing a retreating ice margin, with reworking of marine sediments into a lacustrine basin.
28	Equally, the same record may be interpreted as recording similar conditions within a semi-enclosed
29	marine embayment dominated by meltwater export and deposition of reworked microfossils. Since
30	assemblages from these cores contrast markedly with proven glacimarine sequences from outside
31	the CDB, a glacilacustrine interpretation is favoured for the laminated sequence, truncated by a Late
32	Weichselian transgressive sequence fining upwards into fully marine conditions. Reworked rare
33	intertidal molluscs from immediately above the regional unconformity provide a minimum date
34	~13.9 cal ka BP for commencement of widespread marine erosion. Though suggestive of
35	glacilacustrine conditions, the exact nature and timing of laminated sediment deposition within the
36	CDB, and the implications this has on (pen)insularity of Ireland following deglaciation, remain
37	elusive.

Boreas

39	Keywords: Celtic Deep Basin, Northwest European continental shelf, sea-level, molluscs,
----	---

40 microfossils, glacimarine, glacilacustrine

1. Introduction

Elucidating the nature and timing of deglaciation in the Celtic and Irish seas at the end of the Weichselian Cold Stage and their associated sea-level histories has significant implications for understanding the development of insularity between Britain and Ireland along with the concomitant effects that this had on the evolving biogeographies of these regions (Stuart 1977, 1995; Devoy 1986, 1995; Coxon & Waldren 1995). Much work has been conducted in the northern part of this area (Irish and Malin seas; e.g. Clark et al. 2004; Thomas et al. 2004; McCabe et al. 2005; Roberts et al. 2007; van Landeghem et al. 2009; Roberts et al. 2011) and increasingly along the coasts of the Celtic Sea (e.g. Ó Cofaigh & Evans 2001a; Evans & Ó Cofaigh 2003; Hiemstra et al. 2006; McCarroll et al. 2010). However, important evidence for ice occupation and subsequent deglaciation at the southern limit of the British-Irish Ice Sheet (BIIS) and the implications this has for ice sheet dynamics and stability, and sediment delivery to the North Atlantic, lies offshore on the floor of the Celtic Sea (Pantin & Evans 1984; Evans 1990; Scourse et al. 1990, 1991, 2009; Tappin et al. 1994). Furthermore, establishing the deglacial to postglacial marine evolution of shelf seas is important given the role such systems play in global ocean productivity (Wollast 1991; Austin & Scourse 1997; Marret & Scourse 2002; Scourse et al. 2002; Scourse in press), as well as CO₂ ocean-atmosphere exchange during climate transitions (Rippeth et al. 2008). Despite a number of observational and glacial isostatic adjustment (GIA) modelling simulations, the extent to which the shallow continental shelf of the Celtic Sea was exposed subaerially following deglaciation and during the Holocene marine transgression remains unresolved (Devoy 1983, 1985, 1995; Lambeck 1995, 1996; Wingfield 1995; Lambeck & Purcell 2001; Peltier et al. 2002). Fundamentally, did deglaciation occur in a tidewater setting followed by uninterrupted postglacial marine conditions, or was there a contiguous land-linkage existed between Britain and Ireland, either during, or subsequent to, deglaciation as suggested by GIA simulations (e.g. Lambeck 1995)?

Boreas

د 4	
4	
5	
6	
7	
8	
q	
1	0
1	4
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	0
1	0
1	9
2	0
2	1
2	2
2	3
2	1
2 0	- -
2 ~	ວ ດ
2	6
2	7
2	8
2	9
3	0
2 2	1
2	י י
0 0	2
3	3
3	4
3	5
3	6
3	7
2 2	8
2	o o
ں ₄	9
4	4
4	1
4	2
4	3
4	4
4	5
4	6
۲ ۸	7
+	(0
4	0
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5 5	5
2	o 7
5	(
5	8
5	9

60

To address this question, and to elucidate the deglacial environments of the Celtic Sea, twelve previously-collected British Geological Survey (BGS) vibrocores (Fig. 1; Table 1) were analysed using a multiproxy litho- and biostratigraphic approach (organic-walled, siliceous, and calcareous microfossils; calcareous macrofossils). A chronological framework is provided by 42 accelerator mass spectrometry (AMS) radiocarbon dates (Table 2). Cores were selected to sample a SW-NE transect across the Celtic Deep Basin (CDB; a bathymetric low on the Celtic Sea shelf; Fig. 1), ideally positioned to test the two competing hypotheses.

73

74 2. Regional Setting

75 Lying to the south of St George's Channel, between southern Ireland, southwest Britain, and 76 northwest France, and extending out to the shelf break (Fig. 1), the Celtic Sea occupies some 77 186,000 km² of the Northwest European Continental Shelf. Water depths range from 60 to 200 m, 78 the central and northern shelf being generally flat and featureless, the result of bevelling of the inner 79 shelf due to eustatic transgressions and regressions under cool temperate and low arctic Pleistocene 80 conditions (Tappin et al. 1994). In the northern part of the study area, the SW-trending Celtic Deep 81 Basin (CDB) attains water depths of up to 130 m, while the Haig Fras granite batholith shoals to 82 within 40 m of modern sea-level in the central Celtic Sea. The CDB follows the Caledonian structural 83 trend present in the northern Celtic Sea, modified by glacial erosion since the middle-Pleistocene 84 (Tappin *et al.* 1994). The northern and central areas also feature linear enclosed deeps <5 km wide 85 and 30 km long, considered to represent jökulhlaup erosion (Wingfield 1989, 1990) or subglacial 86 tunnel-valley formation (Jeffery 1990). In the southern Celtic Sea, the smooth profile of the shelf is 87 interrupted by numerous, generally NW-SE orientated, parallel linear sand ridges (LSR) attaining 88 heights of up to 60 m, lengths of >200 km, and wavelengths of 10-15 km. The precise origin of these 89 features is disputed (e.g. Praeg et al. 2011) though formation under conditions of lowered eustatic 90 sea-level and high tidal bed shear stress during the Pleistocene appears to be the developing

91 consensus (Bouysse *et al.* 1976; Pantin & Evans 1984; Reynaud *et al.* 1985, 1999, 2003; Belderson *et al.* 1986; Marsset *et al.* 1999; Uehara *et al.* 2006; Scourse *et al.* 2009).

93	The northern and central parts of the study area were occupied by grounded glacial ice of
94	the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum (LGM), marking the southernmost
95	extent of the British – Irish Ice Sheet (BIIS) during this interval (Scourse & Furze 2001; Sejrup <i>et al.</i>
96	2005; Ó Cofaigh & Evans 2007; Chiverrell & Thomas 2010; Fig. 1). Thermoluminescence, radiocarbon,
97	and cosmogenic radionuclide exposure dating of glacially-influenced sediments and landforms in the
98	Isles of Scilly suggests ice retreat from the northern margins of the archipelago ~21 ka BP with rapid
99	retreat northwards into the central Irish Sea (Anglesey) under mostly subaqueous conditions in
100	<3000 years (Scourse 1991a, b; Scourse & Furze 2001; Hiemstra et al. 2006; van Landeghem et al.
101	2009; McCarroll et al. 2010). The maximal position of the ice margin west of Scilly remains poorly
102	constrained, but the occurrence of over-consolidated diamicton beneath laminated waterlain
103	glacigenic sediments in BGS core 49/-09/044 was used by Scourse et al. (1990, 1991; core CS-3 this
104	study) to infer that the southern limit of the grounded ISIS ice lay near to, but south of, this location
105	(Fig. 1) terminating in a tidewater margin around 49°30′N at approximately the modern 135 m
106	isobath. Scourse <i>et al.</i> (1990, 1991; and Scourse & Furze 2001) suggest the rapid surging advance of
107	a thin (~100 m) ice lobe across the northern and central Celtic Sea from the BIIS's previously
108	accepted southern margin just south the CDB (Fig. 1). Such thin surging behaviour is supported by
109	evidence from the SE coast of Ireland (Ó Cofaigh & Evans 2001a, b), ice-streaming in the Irish Sea
110	(Roberts et al. 2007), and limited glacial erosion present in the northern Isles of Scilly (Hiemstra et al.
111	2006; McCarroll et al. 2010). The ISIS tidewater terminus in the central Celtic Sea is considered a
112	significant sediment source for the formation of LSRs, though the exact relationship between LSR
113	development and ice sheet behaviour remains equivocal (Reynaud et al. 1985, 1999, 2003; Marsset
114	et al. 1999; Scourse et al. 2009). Nonetheless, palaeotidal modelling indicates megatidal amplitudes
115	in the Celtic Sea over the deglacial interval with high bed stress leading to significant sediment
116	transport (Scourse <i>et al</i> . 2009).

Page 7 of 65

Boreas

3 4	117	Late Pleistocene sediments of the Celtic and Irish seas include extensive subglacial and
5	118	waterlain facies associated with Weichselian ISIS advance and retreat. Multiple tabular Quaternary
7 8	119	glacigenic units underlie much of the northern study area with the Upper Till Member of the
9 10	120	Cardigan Bay Formation – a stiff clayey diamicton with infrequent shell debris – being interpreted as
11 12	121	a late Weichselian lodgement till (Tappin et al. 1994). This is considered to be correlative with the
13 14 15	122	late Devensian Scilly Till (Scourse 1991a). The late Weichselian to early Holocene Western Irish Sea
16 17	123	Formation overlies the Cardigan Bay Formation, composed primarily of two facies within the
18 19	124	northern Celtic Sea: the Chaotic and Mud facies. The Chaotic Facies is a sandy gravel deposit
20 21	125	containing abraded shell debris and is interpreted as a glacimarine or glacilacustrine ice-proximal
22 23	126	deglacial unit, whereas the Mud Facies is represented by tabular stratified units of black to grey-
24 25	127	green shelly silt with sparse small dropstones and microbiota indicative of cold distal glacimarine
26 27 28	128	conditions (Tappin et al. 1994). Holocene seabed sediments in the northern region are represented
20 29 30	129	by the Surface Sands Formation (Pantin 1977, 1978) divided into an upper member - SL1 (modern
31 32	130	marine), conformably overlying the lower SL2 member. SL2 is considered to be a transgressive facies
33 34	131	comprising a basal gravel lag and a rich shallow-water temperate fauna. It rests unconformably on,
35 36 37	132	and truncates, underlying Quaternary and pre-Quaternary sediments.
38 39	133	Sequences from the central and southern region are more complex. The Melville Formation
40 41 42	134	(Evans 1990) comprises late Weichselian to earliest Holocene shallow marine sands with minor shell
42 43 44	135	and gravel beds and occasional muddy horizons. It is in this formation that the LSR are developed,
45 46	136	but it also includes sporadic and discontinuous massive and laminated glacigenic deposits. Core VE
47 48	137	49/-09/044 (CS-3 this study), recovered from the flank of one such ridge (Scourse et al. 1990, 1991;
49 50	138	this study) shows a laminated waterlain mud conformably overlying a stiff diamicton and was used
51 52	139	to help constrain the SW extent of the ISIS. The exact stratigraphic relationship between these
53 54	140	sediments and those shelly sands and gravels comprising the LSR from which it was taken remains
55 56 57	141	unclear (Reynaud et al. 2003; Marsset et al. 1999; Scourse et al. 2009; Praeg et al. 2011).
58 59	142	Nonetheless, Scourse et al. (1990, 1991) defined two glacigenic components of the Melville

143	Formation: Facies A, the Melville Till, an overconsolidated mud with abundant fine gravel and
144	pebbles and an absent, or infrequent, reworked temperate and arctic macrobiota; and Facies B, the
145	Melville Laminated Clay, conformably overlying Facies A, being a plastic laminated mud with a rich in
146	situ ostracod and exclusively arctic foraminifera. Whereas Facies A, the Melville Till is interpreted as
147	a lodgement till (= Cardigan Bay Formation Upper Till Member in the northern region), Facies B, the
148	Melville Laminated Clay is considered a distal glacimarine facies deposited under shallow quiescent
149	conditions (Scourse <i>et al.</i> 1990, 1991). Both have been interpreted to correlate with late Devensian
150	glacigenic deposits on the Isles of Scilly. However, whilst these interpretations may hold true for the
151	southern Celtic Sea, it should be noted that no paleontological investigation has been undertaken on
152	the critical core VE 49/-09/044 (CS-3) where both facies occur together. Surface sediments in the
153	southern region strongly resemble those in the northern sector, Layers A and B of Evans (1990)
154	being equivalent to SL1 and SL2 (respectively) of the Surface Sands Formation of Pantin (1977,
155	1978).
156	It is these units of the Melville, Cardigan Bay, Western Irish Sea, and Surface Sands
150	it is these units of the Mervine, curulgan buy, western mish sea, and surface sailas
157	formations that form the basis of this study; the glacimarine or glacilacustrine nature of the Melville
158	Laminated Clay/Cardigan Bay Mud Facies being critical in testing the hypothesis of a subaerially-
159	exposed landbridge between Britain and Ireland, south of the CDB, during and subsequent to
160	deglaciation.
161	
162	3. Materials and Methods
163	3.1 Core materials and lithostratigraphy
164	Twelve vibrocores collected by the BGS were selected for the present study, constituting a SW-NE
165	transect across the CDB (cores CD-1 to -9) and adjacent shelf (cores CS-1 to -3; Fig.1; Table 1), to
166	provide a representative regional modern-to-deglacial stratigraphy (Fig. 2). Cores prove the Western

- 167 Irish Sea Formation Mud Facies (Tappin *et al.* 1994) in the northern and central Celtic Sea and the till
- 168 and laminated clay members of the Melville Formation (Pantin & Evans 1984; Scourse *et al.* 1990,

Boreas

169	1991) in the central/southern region. Cores were described lithostratigraphically and subsampled for
170	grain size and macro- and microfossils. Grain size analysis comprised oven-drying at low temperature
171	(45°C), weighing, wet-sieving at 63 μ m, oven-drying (45°C), and subsequent dry-sieving at 63, 125,
172	250, 500, and 1000 μm , and where necessary at 2, 4, and 8 mm to calculate % grain size frequency.
173	Due to the variable degree of desiccation since collection, initial wet weights, water content, and
174	shear strength could not be assessed. Descriptions of two cores (VE 51/-07/199 = CD-7 and VE 49/-
175	09/044 = CS-3) examined for this study have been previously published, including lithostratigraphy
176	and (predominantly) Holocene micropalaeontology for CD-7 (Scourse & Austin 1994; Austin &
177	Scourse 1997; Scourse et al. 2002; Marret et al. 2004) and lithostratigraphy for CS-3 (Scourse et al.
178	1990, 1991). Stratigraphic units are numbered from the sea-bed surface down, descriptions being
179	given with the deepest first.
180	
181	3.2 Calcareous macro- and microfossils

Samples investigated for calcareous macrofossils (e.g. molluscs) and microfossils (calcareous foraminifera, ostracods) were processed as for grain size analysis (see §3.1). Sample fractions >500 µm for macrofossil investigation were examined visually and under low-power microscopy. In the majority of samples, all identifiable calcareous macrofossils were picked out. In particularly rich samples, materials were split by micro-splitter. All macrofossil abundances are given as individuals per 100 g dry sediment (ind./100 g). Macrofossils were identified using Tesch (1947), Tebble (1976), Thompson & Brown (1976), Graham (1988), and Hayward & Ryland (1998). Molluscan nomenclature follows Appletans et al. (2011). Calcareous microfossils were noted from subsamples from lithostratigraphic units correlated with the laminated clay and till members of the Melville Formation in an attempt to determine the lacustrine versus marine nature of this unit. Calcareous microfossils were extremely rare (1-2 individuals per dry g of sediment = ind./g), highly abraded, damaged, and generally not identifiable to species level.

3.3 Organic-walled and siliceous microfossils

196	Organic-walled microfossils (dinoflagellate cysts = dinocysts, other non-pollen palynomorphs = NPPs,
197	pollen) were examined from laminated clay and till members of the Melville Formation (and
198	Western Irish Sea Formation mud facies). Samples were weighed, oven-dried at low temperature
199	(45°C), weighed, and wet-sieved at 10 μm following the addition of Lycopodium clavatum tablets for
200	calculation of concentrations (ind./g). The >10 μm fraction was processed for organic-walled
201	microfossils (Marret & Zonneveld 2003), encompassing repeated treatments with 10% cold HCl and
202	cold 38% HF acids. Residues were mounted in safranin-stained glycerine jelly and examined
203	systematically under high-power microscopy (x 400). A minimum of 100 dinocysts was counted from
204	each sample wherever possible and any co-occurring NPPs and pollen were noted. Species
205	identifications primarily follow Rochon <i>et al.</i> (1999) and Head <i>et al.</i> (2005). Most dinocysts were
206	identified to species level, with the exception of Brigantedinium spp. (grouped Brigantedinium
207	cariacoense, Brigantedinium simplex, Brigantedinium sp cysts without visible/present
208	archaeopyle), Protoperidinium spp. (folded/torn round brown cysts), and Spiniferites spp. Within
209	Spiniferites, an unknown form, Spiniferites sp. 1 was distinguished, whereas spiny brown cysts were
210	tentatively identified as Islandinium minutum?.
211	Several samples from cores CS-3 and CD-1,-2, and-3 were analyzed for diatoms. These were
212	prepared in accordance with standard protocols (Battarbee et al. 2001). Sediments were processed
213	by adding 30% H_2O_2 and heating gently to oxidize organics. Sample dilutions were mounted on
214	microscope slides using Naphrax [™] . Identification and enumeration of diatoms was carried out using
215	high-power microscopy (1000x). Taxonomic identification follows Krammer & Lange-Bertalot (1991,
216	1997). Due to the estimated low amounts of carbonate in these sediments, HCl was not used in
217	sample preparation. Consequently, infrequent calcareous nanofossils were apparent in examined
218	samples. Furthermore, processing did not remove all organic matter, as evidenced by foraminiferal
219	linings and freshwater algae present in some samples.
220	

Boreas

Boreas

2 3 4	221	3.4 Radiocarbon assay
5	222	Forty-two marine molluscan samples were submitted for radiocarbon dating in three discrete
7 8	223	batches (Table 2); two batches to the UK Natural Environmental Research Council Radiocarbon
9 10	224	Facility – University of Arizona AMS Laboratory (lab code AA), and one batch to the National Ocean
11 12	225	Sciences AMS Facility at Woods Hole Oceanographic Institution (lab code OS). Dates were calibrated
13 14	226	using CALIB 6.0 (Stuiver et al. 2010) based on the marine calibration dataset Marine09 (Reimer et al.
15 16 17	227	2009). A Δ R value of -33 ± 93 years (Reimer <i>et al.</i> 2002) for the Late Holocene Celtic Sea and adjacent
18 19	228	Irish coast was applied to all dates. Dates are reported in the text as calibrated median probability
20 21	229	ages before present (AD 1950).
22 23	230	
24 25	231	4. Results
26 27	232	Three regionally-extensive lithostratigraphic units were identified from the examined cores, being
28 29 30	233	encountered throughout the study area. This typical tripartite stratigraphy (Fig. 2) is characterised by
31 32	234	a basal sequence of massive to laminated muds (Unit III) marked by small infrequent lonestones and
33 34	235	an apparent absence of molluscs. Truncated by a regionally extensive unconformity, this is overlain
35 36	236	by bio- and litho-clastic gravels (Unit II) beneath silty sands (Unit I), rich in whole and comminuted
37 38	237	marine macrofossils, and comprising the modern seafloor sediments. Variations on this simple
39 40	238	tripartite sequence were encountered in several cores (Fig. 2): CD-2 showed an additional unit of
41 42 43	239	gravelly sand (Unit IIIa) beneath Unit III laminated muds; CD-3 exhibited thin interbeds of organic-
43 44 45	240	rich laminated silt (Unit IIa) within a particularly extensive sandy gravel sequence considered to be
46 47	241	Unit II; CD-8 proved the upper two units (units I and II) underlain by massive shelly and gravelly
48 49	242	sands (Unit IIb); CS-3 displayed a massive well-consolidated stony diamicton (Unit IIIb) beneath Unit
50 51	243	III.
52 53	244	
54 55 56	245	4.1 Unit III (laminated-massive mud)
57 58 59	246	4.1.1 Lithostratigraphy

1	
2	
3	
4	
5	
6	
7	
י פ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
21	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
-1-3 50	
50	
51	
52 50	
53	
54	
55	
56	
57	
58	
59	
60	

247	Remarkably uniform across the study area, Unit III is a greyish brown, faintly to well laminated
248	(infrequently massive), sandy to silty clay (Fig. 2). Where well developed, laminae form couplets of
249	silt (to fine sand) and clay approximately 1-2 mm in thickness. Small (typically <30 mm) subangular
250	to rounded lithic clasts – lonestones – occur in variable concentrations in all cores (CD-8 and -9 do
251	not recover this unit). Unit III varies in thickness from 94 to 475 cm from the upper erosional contact
252	with Unit II to the core base. In only two instances (CD-2, CS-3) are sediments beneath typical Unit III
253	muds penetrated (Fig. 2). In CD-2, a poorly sorted gravelly sand containing clay and lithic clasts and
254	highly abraded bioclastic debris (Unit IIIa) occurs below the laminated mud. In CS-3, a 15 cm thick
255	subunit (Unit IIIb) of overconsolidated clast-rich diamicton, previously described by Scourse et al.
256	(1990) as a lodgement till, occurs at the core base beneath Unit III.
257	
258	4.1.2 Biostratigraphy
259	In stark contrast to units I and II, Unit III is marked by the near-absence of identifiable macrofossils
260	(Fig. 3). Notably, macrofossil fauna identified from the very top of Unit III (CD-5, 070-075 cm)
261	represent burrow infill and interstitial breccia matrix derived from the overlying Unit II sandy gravels
262	and is thus not considered in situ. CD-2 237-242 cm contained exceptionally rare identifiable
263	macrofossil materials (one heavily abraded bryzoan fragment, two balanoid plates) considered not
264	to be contamination from overlying units. In CD-2, a poorly sorted gravelly sand (Unit IIIa), occurring
265	beneath Unit III, contained infrequent extremely abraded bioclastic fragments (0.44 ind./100 g;
266	including barnacle plates, bryzoan fragments, extremely rare echinoid spines, and a single abraded
267	valve of Nucula sp.; no microfossil assay conducted). No macrofossils were evident in the basal
268	diamicton (Unit IIIb) from CS-3, however Scourse et al. (1990) assign this subunit to Facies A of the
269	Melville Till from which rare abraded, broken temperate and arctic macrofossils have been recorded
270	(Hiatella sp. and balanoid plates, considered reworked; Scourse et al. 1990).
271	Four Unit III samples from CDB cores CD-1, -2, and -3 and the open shelf core CS-3 were
272	investigated for siliceous microfossils. These showed exceptionally rare freshwater diatoms, though

Boreas

	273	observed numbers (1-12 valves) were insufficient to warrant meaningful statistical counts. One
	274	sample (CD-3) proved barren of diatoms. The common planktonic diatom Aulacoseira distans, and
	275	the widely distributed and exclusively freshwater epipelic diatom Neidium ampliatum was observed
I	276	with good preservation, whereas a large fragment of the epipelic freshwater diatom Pinnularia
	277	microstauron occurred in one sample (CD-1). No marine diatoms, in whole or fragments, were
	278	observed in any of the investigated samples. Other microfossils present in diatom slides include
	279	siliceous stomatocyst of the freshwater algae Chrysophyceae, and organic microfossils such as
	280	Botryococcus, Pediastrum, and foraminiferal linings. External calcified plates (coccoliths) from
I	281	calcareous marine nanoplankton (Prymnesiophyta) were observed in all samples consistent with
	282	their reworking from Cretaceous chalk outcrops on the floor of the Celtic and Irish seas (Evans 1990;
	283	Scourse <i>et al.</i> 1990; Tappin <i>et al.</i> 1994). No meaningful differences in the diatom assemblages were
	284	evidenced between the CDB and open shelf Unit III samples.
	285	Dinocyst abundances are low in Unit III, with most samples exhibiting concentrations <650
	286	cysts/g and diversities of <10 species (max. 18 species; Fig. 4A). Only one sample (CD-7) shows
	287	conspicuously high dinocyst abundances, reaching ~2780 cysts/g. Dinocyst assemblages are
	288	overwhelmingly dominated by phototrophic taxa, in particular Bitectatodinium tepikiense whose
	289	relative abundances typically reach >40%. This species is accompanied by lesser proportions of
1	290	Lingulodinium macherophorum and Operculodinium centrocarpum, as well as Spiniferites spp.
	291	(Spiniferites lazus, Spiniferites cf. membranaceus) and Islandinium minutum?. Brigantedinium spp.
	292	and other protoperidinoid dinocysts are much reduced and only present in noticeable amounts in
	293	samples from CS-3. Absolute abundances of acritarchs and zoomorphs are much reduced in Unit III
1	294	(Fig. 4B). Foraminiferal lining concentrations are particularly low (<35 ind./g), apart from one,
1	295	potentially contaminated sample at the Unit II/Unit III transition (CD-2, 190 cm). Invertebrate eggs
	296	and, in particular, invertebrate mouthparts are also much reduced or absent in Unit III. In contrast,
	297	freshwater chlorophycean algae (Botryococcus, Pediastrum) are present in most Unit III samples in
	298	variable amounts. Corylus pollen concentrations are low whereas Pinus pollen and Pteridium spores

2	
3	
4	
5	
6	
7	
ړ ۵	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
50	
00	
5/	
58	
59	
60	

299	show variable absolute abundances, sometimes outnumbering Unit II values (Fig. 4B).
300	Concentrations of pre-Quaternary materials such as dinocysts (e.g. Achomosphaera andalousiensis)
301	and spores are high. Unit III samples from the open shelf (CS-3) show similar dinocyst abundances
302	and assemblage structures to those from within the CDB, although Brigantedinium spp. are elevated
303	and Spiniferites spp. appear reduced (Fig. 4A). Three samples from the Unit IIIb basal diamicton in
304	CS-3 (Fig. 4A; Facies A - Melville Till of the Melville Formation sensu Scourse et al. 1990), below the
305	typical Unit III laminated muds, show extremely rare dinocysts or are barren. Where present,
306	dinocysts exhibit exceptionally low concentrations and diversities. Nonetheless, similar to typical
307	Unit III deposits, a mixture of cool-temperate and cosmopolitan taxa occurs. Though markedly
308	impoverished, these Unit IIIb diamicton populations nevertheless closely resemble some dinocyst
309	assemblages from typical Unit III laminated mud samples. Other organic-walled microfossils are
310	generally absent in the diamicton, apart from sporadic occurrences at very low concentrations
311	(foraminiferal linings, invertebrate eggs, Botryococcus, pollen; Fig. 4B). It should be noted that
212	Common st $r/(4000)$ consider this dispristor to have sub-shear it thus infermine that all
312	Scourse et al. (1990) consider this diamicton to be a subglacial deposit, thus inferring that all
312	included microfossils should be reworked.
312313314	included microfossils should be reworked.
312313314315	<i>4.1.3 Chronology</i>
 312 313 314 315 316 	 Scourse et al. (1990) consider this diamicton to be a subglacial deposit, thus inferring that all included microfossils should be reworked. 4.1.3 Chronology No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The
 312 313 314 315 316 317 	 Scourse <i>et al.</i> (1990) consider this diamicton to be a subglacial deposit, thus inferring that all included microfossils should be reworked. <i>4.1.3 Chronology</i> No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides
 312 313 314 315 316 317 318 	 Scourse <i>et al.</i> (1990) consider this diamicton to be a subglacial deposit, thus inferring that all included microfossils should be reworked. <i>4.1.3 Chronology</i> No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in
 312 313 314 315 316 317 318 319 	 Scourse <i>et al.</i> (1990) consider this diamicton to be a subgracial deposit, thus inferring that all included microfossils should be reworked. <i>4.1.3 Chronology</i> No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in CS-3 is considered a lodgement till correlative and coeval with the Scilly Till (<i>sensu</i> Scourse <i>et al.</i>
 312 313 314 315 316 317 318 319 320 	 Scourse <i>et al.</i> (1990) consider this diamicton to be a subglacial deposit, thus interring that all included microfossils should be reworked. <i>4.1.3 Chronology</i> No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in CS-3 is considered a lodgement till correlative and coeval with the Scilly Till (<i>sensu</i> Scourse <i>et al.</i> 1990), an approximate maximum age of 21-22 cal ka BP (McCarroll <i>et al.</i> 2010) for Unit III deposition
 312 313 314 315 316 317 318 319 320 321 	 Scourse et al. (1990) consider this diamicton to be a subglacial deposit, thus inferring that all included microfossils should be reworked. 4.1.3 Chronology No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in CS-3 is considered a lodgement till correlative and coeval with the Scilly Till (<i>sensu</i> Scourse <i>et al.</i> 1990), an approximate maximum age of 21-22 cal ka BP (McCarroll <i>et al.</i> 2010) for Unit III deposition can be inferred.
 312 313 314 315 316 317 318 319 320 321 322 	 Scourse et al. (1990) consider this diamicton to be a subgradial deposit, thus inferring that all included microfossils should be reworked. 4.1.3 Chronology No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in CS-3 is considered a lodgement till correlative and coeval with the Scilly Till (<i>sensu</i> Scourse <i>et al.</i> 1990), an approximate maximum age of 21-22 cal ka BP (McCarroll <i>et al.</i> 2010) for Unit III deposition can be inferred.
 312 313 314 315 316 317 318 319 320 321 322 323 	 Scourse et al. (1990) consider this diamicton to be a subgradial deposit, thus interring that all included microfossils should be reworked. 4.1.3 Chronology No dates are available from Unit III due to the absence of dateable <i>in situ</i> organic materials. The oldest date from the overlying Unit II of 13.9 cal ka BP (CD-8, <i>S. elliptica</i>, AA-36251; Table 2) provides a minimum age on the deposition of Unit III. If the Unit IIIb basal diamicton present below Unit III in CS-3 is considered a lodgement till correlative and coeval with the Scilly Till (<i>sensu</i> Scourse <i>et al.</i> 1990), an approximate maximum age of 21-22 cal ka BP (McCarroll <i>et al.</i> 2010) for Unit III deposition can be inferred. 4.2 Unit II (bioclastic gravel)

Boreas

325 Unit II, occurring in all cores, is typically a massive, silty sandy gravel, frequently upward fining (Fig. 326 2). Whole shells and fragments are common throughout, increasing upwards. The lithic component 327 includes rounded to subrounded gravel-sized clasts (~5-20 mm in size). In all cases, Unit II rests 328 unconformably on underlying materials, with an erosional surface marked by brecciation and 329 bioturbation. Clay clasts derived from erosion of underlying Unit III are frequent towards the base of 330 Unit II. Iron and manganese staining around lithic and biogenic clasts is also common towards the 331 unit base. Unit thicknesses are variable (8-264 cm), as are colours, though greyish brown to olive 332 yellow is typical. 333 In two cores (CD-1 and -3) Unit II is interrupted by thin (<20 cm) sandy silt interbeds (Unit IIa; 334 Fig. 2). In CD-1 this single interbed is massive and shell-rich whilst the three interbeds in Unit II CD-3 335 are laminated, apparently organic-rich, and dark in colour. An additional variation (Unit IIb) is noted

from CD-8 (Fig. 2), where massive sand (>85 cm thick) unconformably underlies the typical Unit II

337 sequence. These sands are gravelly towards the base, containing blackened lithic and shell clasts,

338 and clay balls, but fine upward into a clean and well sorted sand with little to no silt.

339

340 4.2.2 Biostratigraphy

341 Macrofossil assemblages from Unit II are broadly similar to Unit I (Fig. 3). Species diversities are high 342 (18-47; typically >30), populations dominated by subtidal boreal-temperate taxa typical of sandy 343 substrates. As in Unit I, bivalves dominate (max. 483 ind./100 g, CS-1) with prosobranch gastropods 344 (max. 90 ind./100 g, CD-1) and echinoderms (max. 182 ind./100 g, CD-1). Dominant species include 345 bivalves A. ephippium, P. ovale, and T. ovata, and the echinoderm E. pusillus. Though present in Unit 346 I, high numbers of the bivalve S. elliptica and the prosobranch gastropod Gibbula tumida 347 characterise Unit II, along with high concentrations of serpulid polychaete material (common species 348 including Pomatoceros triqueter and Ditrupa arietina) and calcareous bryzoan debris. Abundant 349 balanoid plates (max. 372 per 100 g, CD-9) frequently outnumber echinoderm spicules (max. 163 per 350 100 g, CD-2). In contrast to Unit I, infrequent small (1-5 mm) prosobranch gastropods with intertidal,

2		
3	351	or restricted low water spring tide to shallow subtidal affinities (Graham 1988; Peacock 1993) occur
4 5 6	352	in the majority of Unit II samples (max. 19 ind./100 g, CD-9). These include Rissoa parva, Rissoella
7 8	353	opalina, Pusillina sarsi, Tornus subcarinatus, and Cingula cingillus. Silty interbeds (Unit II a; CD-1 and
9 10	354	-3) and underlying massive sands (Unit IIb; CD-8) possess macrofossil assemblages similar to those ir
11 12	355	more typical Unit II deposits, but display much lower species diversities (<10 taxa) and
13 14	356	concentrations (max. 39 ind./100 g, CD-3; Fig. 3).
15 16 17	357	Dinocyst data are only available from Unit IIa (Fig. 4A) interbeds present in CD-3, not from
17 18 19	358	the more typical silty sands and gravels of Unit II widespread through the CDB (see Marret et al.
20 21	359	2004 for typical Unit II dinocyst records; CD-7). These specific samples were taken to elucidate the
22 23	360	palaeoenvironmental origin and the intertidal/ estuarine vs. deeper marine character of these
24 25	361	interbeds. Dinocyst concentrations in these samples are generally low (~150-560 ind./g), diversities
26 27	362	ranging from 12 to 23 species. Assemblages are predominantly composed of protoperidinoid taxa,
28 29	363	including Protoperidinium spp., Quinquecuspis concreta, and Votadinium calvum. These
30 31 32	364	heterotrophs are accompanied by phototrophic Spiniferites spp. (including Spiniferites sp. 1 and
33 34	365	Spiniferites cf. membranaceus). Other NPPs (Fig. 4B), including invertebrate remains (eggs,
35 36	366	mouthparts), foraminiferal linings, and freshwater algae are present in low to moderate amounts.
37 38	367	Corylus and Pinus pollen are abundant, whereas pre-Quaternary dinocysts and spores are rare (both
39 40	368	<20 ind./g; Fig. 4B).
41 42	369	
43 44 45	370	4.2.3 Chronology
46 47	371	Excluding deposit-feeding bivalves (e.g. Nucula spp.), which may exhibit exaggerated ages due to
48 49	372	uptake of "old" carbonate depleted in ¹⁴ C ("Portlandia Effect" <i>sensu</i> England <i>et al.</i> 2012), dates from
50 51	373	Unit II span a wide range of ages, from 4.0 to 13.9 cal ka BP. We exclude a date of 0.4 cal ka BP (CS-1
52 53	374	Corbula gibba, AA-36188; Table 2) considered anomalously young relative to other dates from this
54 55	375	horizon. Age inversions and wide age spreads within the same horizon are frequent. For example,
56 57 58	376	CD-4 where dates of 10.3 cal ka BP (OS-79220) and 6.7 cal ka BP (AA-32278) occur at the same
59 60		1

1

Boreas

3 4	377	sample depth, and CD-3 with a date of 10.9 cal ka BP (AA-36242) above dates of 9.3 to 10.0 cal ka BP
5	378	(AA-36243; AA-36244; OS-79103; Table 2). Nonetheless, the majority of accepted dates (20) are >9
7 8	379	cal ka BP, with seven dates being ≥12.7 cal ka BP. Of these seven older dates, five occur within the
9 10	380	massive shelly sands (Unit IIb) underlying Unit II in CD-8, including the oldest dates (13.9 cal ka BP;
11 12	381	OS-79120 and AA-36251) encountered in this study. Previously published dates from CD-7 (Scourse
13 14	382	& Austin 1994; 9.4 and 13.1 cal ka BP) agree with this general chronology.
15 16	383	Out of the total accepted 31 dates from Unit II (including IIa and IIb), seven were derived
17 18 10	384	from obligate intertidal to shallow water taxa (Table 2). These seven dates span the entire age range
20 21	385	encountered for Unit II though over half are ≥12.7 cal ka BP. Such intertidal taxa dates should be
22 23	386	viewed with caution, as all from within the CDB must be considered redeposited given their
24 25	387	occurrence in a bathymetric basin that could not have been subjected to intertidal conditions during
26 27	388	late Pleistocene - early Holocene lower sea-levels. As a basin, the CDB would have either formed a
28 29	389	subtidal (glaci)marine embayment or an isolated lacustrine system under such conditions (see §5.2).
30 31	390	
32 33 34	391	4.3 Unit I (upper silty sand)
35 36	392	4.3.1 Lithostratigraphy
37 38	393	Unit I is a predominantly an upward-fining massive silty sand with infrequent finer silty interbeds in
39 40	394	some cores (CD-2 and -9). Thickness varies from 10 to 195 cm, whilst colour ranges from olive grey
41 42	395	to brownish grey. Contact with underlying Unit II is typically gradational although some cores (CD-1,
43 44	396	-4, -8) show an abrupt transition. Throughout the area, Unit I is exceptionally rich in bioclastic
45 46 47	397	material, constituting the modern seabed sediment.
47 48 49	398	
50 51	399	4.3.2 Biostratigraphy
52 53	400	Calcareous marine macrofossils are universally abundant (Fig. 3), with a maximum of 39 species per
54 55	401	individual sample (CD-4, 50-55 cm). Although variations are apparent, assemblages are typically
56 57	402	dominated by the bivalves Anomia ephippium, Parvicardium ovale, and Timoclea ovata,
58 59 60		17

2	
3	
4	
5	
5	
6	
7	
o	
0	
9	
10	
11	
40	
12	
13	
14	
15	
10	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
00	
32	
33	
34	
25	
30	
36	
37	
30	
00	
39	
40	
<u>4</u> 1	
40	
42	
43	
44	
15	
40	
46	
47	
10	
40	
49	
50	
51	
51	
52	
53	
54	
5-	
55	
56	
57	
50	
Эð	
59	
60	
~~	

403	accompanied by the prosobranch gastropod Turritella communis and the clypeasteroid echinoderm
404	Echinocyamus pusillus. Bivalves such as Spisula elliptica, Hiatella arctica and Nucula sulcata also
405	occur frequently. Bivalve concentrations reach a maximum of 2314 ind./100 g (CD-4) whereas
406	prosobranch gastropods are less abundant (max. 133 ind./100 g, CD-2). Large quantities of
407	unidentified echinoderm spicules (max. 1160 ind./100 g) and barnacle (balanoid) plates (max. 515
408	/100 g) typify most samples, as do infrequent fish otoliths (likely from Trisopterus minutus). In some
409	samples (CD-5) shell fragments and byssus threads of the fan mussel Atrina fragilis occur in notable
410	quantities. The thecosomat pteropod Limacina retroversa is also locally abundant (CD-4 and -2; 312
411	and 227 ind./100 g, respectively).
412	
413	4.3.3 Chronology
414	The few direct dates available from Unit I (Table 2) indicate an early to mid Holocene
415	commencement of deposition. Chronology is further constrained by numerous dates from
416	underlying Unit II (see §4.2.3), suggesting asynchronous onset of Unit I deposition throughout the
417	region. Previously published molluscan and bulk benthic foraminiferal dates from Unit I in CD-7
418	(Scourse & Austin 1994; Scourse <i>et al.</i> 2002) range from ~8 to 3 cal ka BP, in agreement with
419	chronologies described in the present study.
420	
421	5. Interpretations and Discussion
422	5.1 Interpretation of units
423	The shallow stratigraphy of the CDB and adjacent shelf documents the terminal Pleistocene to
424	Holocene palaeoenvironmental evolution of the Celtic Sea. Typically, short (<6 m) vibrocores prove
425	three lithostratigraphic units (Fig. 2): (i) an upper shelly silty sand deposit (Unit I) constituting
426	modern seabed sediments and containing a rich cool-temperate marine macrofauna, resting
427	conformably on (ii) a regionally extensive gravel lag (Unit II), itself containing abundant boreal-
428	temperate marine macro- and microfossils. The majority of cores also prove (iii) a waterlain massive

Boreas

429	to laminated glacially-influenced mud unit (Unit III) marked by infrequent small lonestones,
430	interpreted as dropstones; an absence of macrofossils, calcareous microfossils, and marine diatoms;
431	and low-abundance and disparate palynomorph assemblages. Unit III is truncated by an extensive
432	erosional surface over which Unit II occurs. Rarely, cores prove deposits beneath Unit III, including
433	glacial diamicton (Unit IIIb; CS-3) and a poorly sorted gravelly sand (Unit IIIa; CD-2).
434	Unit I is considered equivalent to SL1 (in the north) and Layer A (central and south), whilst
435	Unit II equates to SL2 (Tappin <i>et al.</i> 1994) and Layer B (Evans 1990). The glacigenic waterlain muds of
436	Unit III are correlative with the Western Irish Sea Formation Mud Facies (Tappin et al. 1994) and the
437	Laminated Clay of the Melville Formation (Pantin & Evans 1984; Evans 1990; Scourse <i>et al.</i> 1990).
438	The Unit IIIb diamicton at the base of CS-3 has previously been assigned to the southern region
439	Melville Till of the Melville Formation (Scourse <i>et al.</i> 1990, 1991), equivalent to the Upper Till
440	Member of the Cardigan Bay Formation (Scourse 1991a; Tappin et al. 1994). Although limited core
441	penetration restricts the interpretation of the Unit IIIa gravelly sand at the base of CD-2, its
442	relationship to overlying units suggests a correlation with the Chaotic Facies of the Western Irish Sea
443	Formation. (Tappin <i>et al.</i> 1994).
444	
445	5.1.1. Unit III
446	Lithostratigraphically, the laminated muds of Unit III represent glacially-influenced waterlain
447	sediments deposited predominantly from suspension, with a minor component of small ice-rafted
448	dropstones. Similar deposits have been recorded from deglacial glacimarine and glacilacustrine
449	settings boarding the Celtic and Irish seas (Fletcher & Siddle 1998; Hambrey et al. 2001; Thomas et
450	al. 2004; Etienne et al. 2006) and from numerous other locations including the deglacial margins of
451	the Laurentide Ice Sheet (e.g. Freeman-Lynde <i>et al.</i> 1980; Kerr 1987; MacLean <i>et al.</i> 1989; Andrews
452	et al. 1991; Pieńkowski et al. 2012). Deposition under highly turbid, quiescent, low energy conditions
453	and an absence of bioturbation is evidenced by the frequently laminated nature of this unit (Syvitski
454	1991; Ó Cofaigh & Dowdeswell 2001). Though clearly "glaciaqueous", the lithostratigraphy alone

(this study) is insufficient to conclusively distinguish between marine or lacustrine conditions.
Nonetheless, given the regional uniformity of this unit and its occurrence in the previously described
CS-3, it is considered synonymous with Facies B and the Melville Laminated Clay of the Melville
Formation of Scourse *et al.* (1990). Notably, the Melville Laminated Clay is considered glacimarine,
defined from southern Celtic Sea BGS cores, with rich, *in situ* arctic ostracods, foraminifera, and
molluscs (Scourse *et al.* 1990).

In marked contrast to previously described Melville Laminated Clay samples (Scourse et al. 1990), Unit III samples examined in this study are characterised by an absence of identifiable macrofossils (Fig. 3), apart from one sample (CD-2) containing extremely sparse and highly abraded biogenic fragments possibly glacially reworked from earlier marine sediments. Similarly, microfossils are generally sparse. Only extremely rare freshwater diatoms are recorded, whereas marine diatoms are absent. Organic-walled microfossils (Fig. 4) typically exhibit low dinocyst concentrations and a near-absence of other NPPs, especially foraminiferal linings. Dinocyst assemblage structures also differ compared to studied Unit II interbeds, phototrophs dominating over heterotrophs. The principal Unit III dinocyst *B. tepikiense* is indicative of fully marine, temperate-polar conditions. It predominantly dwells in regions with seasonal sea-ice cover of <4 months/year and summer sea-surface temperatures (SST) of 10-20°C (Marret & Zonneveld 2003), including waters off Iceland, the Faroe Islands, and the east coast of Canada (Harland 1983; Mudie 1992; Matthiessen et al. 2005). In the modern Celtic Sea, B. tepikiense is characteristic of cool, stratified regions (Marret & Scourse 2002; cf. Marret et al. 2004), but never reaches relative abundances of >5%, in marked contrast to its dominance in Unit III. B. tepikiense is furthermore prominent in Late Glacial Interstadial sediments of the NW European continental margin (Harland 1994). Of the two other prominent dinocyst taxa in Unit III, O. centrocarpum is cosmopolitan, tolerant of large fluctuations in physical parameters (including sea-ice), and abundant in the cold to temperate North Atlantic, whereas L. macherophorum prefers temperate to tropical regions with SST of $>10^{\circ}$ C. Its highest abundances are reported from coastal waters off NW Africa and the Iberian Peninsula (Marret & Zonneveld 2003). In

Boreas

481	general, the dinocyst assemblages in Unit III indicate cool to temperate marine conditions, but show
482	a mixture of both fully coastal/marine (B. tepikiense, S. membranaceus, S. lazus) and brackish water-
483	tolerant (S. ramosus), sea-ice tolerant (B. tepikiense, O. centrocarpum, Selenopemphix quanta,
484	Islandinium minutum) and intolerant (L. macherophorum, S. membranaceus), and temperate-polar
485	(B. tepikiense) as well as thermophilic (S. mirabilis) taxa (Marret & Zonneveld 2003). The overall cool
486	to temperate character of this assemblage is inconsistent with the demonstrably glacially-influenced
487	sediments. The occurrence of sea-ice-intolerant and thermophilic dinocysts and the relatively high
488	species diversity is particularly problematic, and thus points to a notable reworked component.
489	Furthermore, the paucity of other NPPs, especially zoomorphs, is striking. The presence of such
490	palynomorphs should be expected in glacimarine sediments, even at times of adverse, ice-proximal
491	conditions (e.g. Mudie <i>et al.</i> 2006; Pieńkowski <i>et al.</i> 2012).
492	It has been suggested that such mixed dinocyst assemblages resemble those from modern
493	temperate saltmarsh and estuarine environments, such as the Humber Estuary (Marret pers. obs.)
494	and the Massachusetts coast (Pospelova et al. 2004, 2005). However, despite the occurrence of
495	common taxa such as O. centrocarpum, Spiniferites spp., L. macherophorum and I. minutum both in
496	Unit III and reported estuarine samples (Pospelova et al. 2004, 2005), the foremost taxon present in
497	Unit III, <i>B. tepikiense</i> , is absent. Critically, the laminated and dropstone-rich glacially-influenced
498	sediments and the near-complete absence of any marine/estuarine macrofossils, foraminifera,
499	ostracods, and diatoms strongly argue against an estuarine origin for Unit III deposits.
500	In summary, Unit III is a waterlain distal glaciaqueous deposit containing an exceptionally
501	sparse reworked macrofossil assemblage and lacking key in situ marine indicators such as
502	foraminifera, ostracods, and diatoms. If organic-walled microfossils are assumed to be entirely (or to
503	a large extent) in situ, the cool-temperate palaeoenvironmental conditions they indicate appear at
504	odds with the remainder of the evidence. These inconsistencies preclude a simple
505	palaeoenvironmental interpretation of this unit. Rather, two hypotheses are proposed: firstly, that
506	Unit III represents a shallow ice-distal glacimarine facies with a general absence of in situ flora and

2	
3	
4	
5	
6	
7	
8	
0	
9 40	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22 22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
42	
40	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
วช	
59	

60

1

fauna, aside from the sea-ice and brackish-water tolerant dinocyst component (which itself may also
be reworked). Secondly, Unit III represents a glacilacustrine facies, wherein all marine macro- and
microfossils, including the dinocyst component are glacially (and/or glacifluvially) reworked from
pre-existing temperate, boreal, and arctic marine deposits during deglaciation.

511

512 5.1.2 Unit II

513 Unit II of the central and northern Celtic Sea is interpreted as a regionally extensive lithic and 514 bioclastic lag associated with an unconformity truncating underlying basal laminated muds of Unit III 515 (or other pre-Holocene sediments), above which it occurs. Oldest dates from Unit II provide a 516 minimum age for the onset of lag generation of 13.9 cal ka BP. This indicates commencement of 517 widespread erosion across the continental shelf associated with rising late Weichselian to early 518 Holocene sea-levels. Sedimentology and macrofossil biostratigraphy suggest a highly productive 519 shallow subtidal marine environment marked by storm-wave and current re-suspension (Peacock 520 1993; Wingfield 1996; Kidwell 1998, 2002), its typical upward-fining nature and gradation into the 521 overlying silty sands of Unit I consistent with increasing Holocene water depths. Radiocarbon dates 522 from Unit II span much of the early to mid Holocene (Table 2), with apparent age inversions and 523 wide ranges of dates from the same depth intervals suggesting considerable time-averaging, 524 condensation, and sediment starvation – conditions expected in a shallow high-energy environment 525 (Fürsich & Aberhan 1990; Kowalewski et al. 1998; Kidwell 1998, 2002). 526 Macrofaunas are typically subtidal boreal to temperate, taxa currently encountered on the 527 NW European continental shelf (Tebble 1976; Graham 1988; Hayward & Ryland 1998). Organic-528 walled microfossils from interbed samples (CD-3) show dinocysts typical of the NW European 529 continental shelf dominated by temperate taxa (Fig. 4A; Dodge & Harland 1991; Marret & Scourse 530 2002), including protoperidinoids such as Q. concreta and V. calvum, also present in the modern-531 day, seasonally stratified sector of the Celtic Sea (Marret & Scourse 2002). Round brown cysts 532 (Protoperidinium spp., Brigantedinium spp.) produced by several motile dinoflagellate species, are

Boreas

3 4	533	also prominent in this unit. These have been shown to occur in high abundances in regions of
5	534	enhanced productivity (Marret & Zonneveld 2003). Species of the genus Spiniferites, also abundant
7 8	535	in Unit II, have been found in high numbers along the modern British coastline (Reid, 1975). Unlike
9 10	536	modern populations in the Celtic Sea (Marret & Scourse 2002), dinocysts concentrations from Unit II
11 12	537	are low, however this may be a function of the coarse nature of the sediment and shallow turbulent
13 14 15	538	conditions preventing cyst deposition as opposed to reflecting in situ productivity. It should be noted
16 17	539	that these microfossil samples are from interbeds only, and thus may not be representative of
18 19	540	"typical" Unit II sandy gravels. However, macrofossil concentrations from Unit IIa interbeds are also
20 21	541	markedly low relative to typical Unit II deposits. Nonetheless, both dinocyst assemblages and
22 23	542	concentrations in Unit IIa closely resemble those previously described from Unit II (CD-7, Marret et
24 25	543	al. 2004). Although no comparable NPP data are available from the study area, the presence of
26 27	544	foraminiferal linings, invertebrate remains, and other palynomorphs in Unit II (Fig. 4B) is comparable
28 29	545	to other marine settings (e.g. de Vernal et al. 1992; McCarthy et al. 2003), supporting dinocyst-based
30 31	546	interpretations.
20		
32 33 34	547	The presence of infrequent small obligate intertidal and shallow water prosobranch
32 33 34 35 36	547 548	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine
32 33 34 35 36 37 38	547 548 549	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991,
32 33 34 35 36 37 38 39 40	547 548 549 550	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material
32 33 34 35 36 37 38 39 40 41 42	547 548 549 550 551	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and
32 33 34 35 36 37 38 39 40 41 42 43 44	547 548 549 550 551 552	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	547 548 549 550 551 552 553	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and selective destruction is also indicated by benthic foraminifera previously described from this unit
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	547 548 549 550 551 552 553 554	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and selective destruction is also indicated by benthic foraminifera previously described from this unit (CD-7, foram zone F1b, Scourse <i>et al.</i> 2002) and supported by palaeotidal simulations of bed stress
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	547 548 549 550 551 552 553 554 555	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and selective destruction is also indicated by benthic foraminifera previously described from this unit (CD-7, foram zone F1b, Scourse <i>et al.</i> 2002) and supported by palaeotidal simulations of bed stress evolution (Scourse <i>et al.</i> 2009). Despite the possibility of intertidal conditions on the higher
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	547 548 549 550 551 552 553 554 555 556	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and selective destruction is also indicated by benthic foraminifera previously described from this unit (CD-7, foram zone F1b, Scourse <i>et al.</i> 2002) and supported by palaeotidal simulations of bed stress evolution (Scourse <i>et al.</i> 2009). Despite the possibility of intertidal conditions on the higher
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	547 548 549 550 551 552 553 554 555 556 557	The presence of infrequent small obligate intertidal and shallow water prosobranch gastropods is inconsistent with CDB physiography, where either subtidal marine or lacustrine conditions should have persisted following deglaciation (Eyles & McCabe 1989, 1991; Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Scourse & Furze 2001; Uehara <i>et al.</i> 2006). This material is considered allochthonous, advected into the CDB from nearby intertidal areas by stormwave and tidal currents. High tidally-driven bottom current velocities resulting in post mortem transport and selective destruction is also indicated by benthic foraminifera previously described from this unit (CD-7, foram zone F1b, Scourse <i>et al.</i> 2002) and supported by palaeotidal simulations of bed stress evolution (Scourse <i>et al.</i> 2009). Despite the possibility of intertidal conditions on the higher continental shelf following deglaciation (Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001), macrofaunas from Unit II do not conclusively indicate such an environment. Indeed, fewer obligate

2		
3	559	being almost universally composed of subtidal taxa (Fig. 3). If the littoral zone did progress across
4		
5	560	the central Celtic Sea shelf during rising late glacial and Holocene sea-levels, no definitive in situ
0 7	5(1	
8	561	deposits have been identified in this study.
9	567	
10	302	
11	563	5 1 3 Init
12	505	5.1.5 01111
13	564	Unit L represents a boreal-temperate subtidal shelf sea deposit recording increasing water depths
14	001	
16	565	throughout the Holocene. Some cores (CD-1 and -3) show possible truncation at the top of Unit I, a
17		
18	566	phenomenon also recorded from CD-7 (Austin & Scourse 1997; Scourse et al. 2002). Furthermore, it
19		
20	567	is from this unit CD-7 (Uni <mark>t I this</mark> study; "Lithozone 3" <i>sensu</i> Scourse <i>et al.</i> 2002; "Lithozone 1" <i>sensu</i>
21 22		
22	568	Marret et al. 2004) that the onset of Celtic Sea seasonal stratification as a function of increasing
24	- (0	
25	569	water depth has been described on the basis of foraminifera and dinocysts (Scourse & Austin 1994;
26	570	Austin & Common 1007. Morent et al. 2004) a thread ald shares from mined to stratified waterman
27	570	Austin & Scourse 1997; Marret et al. 2004), a threshold change from mixed to stratmed watermasses
28 20	571	that occurred between 8990 and 8440 cal yr cal BP (Scourse et al. 2002). This environmental shift in
23 30	571	
31	572	Unit I is confirmed by the occurrence of the pteropod L. retroversa – a planktonic species associated
32		
33	573	with cool boreal, stratified waters (Bathman <i>et al.</i> 1991; Gallager <i>et al.</i> 1996; Gowen <i>et al.</i> 1998).
34 25		
35 36	574	Where present (CS-3, CD-2, CD-4), high <i>L. retroversa</i> numbers are achieved after the establishment
37		
38	575	of seasonal stratification. Its decline in the late Holocene is likely a function of increased water
39		
40	576	temperatures rather than a breakdown in seasonal stratification. Molluscan (and other) macrofossils
41	577	and all as batiled and of bound to tangents officiation for and on the median ANA/E-mensor continuetal
42 42	577	are all subtidal and of boreal to temperate aminities, found on the modern NW European continental
43 44	578	shelf (Tehhle 1976: Thompson & Brown 1976: Graham 1988: Hayward & Ryland 1998)
45	570	
46	579	
47	517	
48	580	5.2 Competing hypotheses
49 50		
50 51	581	The clay-rich and frequently laminated sediments of Unit III, marked by sporadic small dropstones,
52		
53	582	suggest distal, glacially-influenced subaqueous suspension-driven deposition with a minor seasonal

- 583 ice or iceberg-driven rafted component. However, the marine or lacustrine nature of such an
- 584 environment is difficult to ascertain especially considering the contradictory nature of the contained

1

Boreas

ი		
3		
4		
ᄃ		
0		
6		
7		
ი		
ø		
9		
1	n	
1	U	
1	1	
1	2	
2	2	
1	3	
1	4	
1	Б	
!	5	
1	6	
1	7	
	ò	
1	Ø	
1	9	
2	ი	
~	2	
2	1	
2	2	
ი	2	
2	J	
2	4	
2	5	
2	~	
2	О	
2	7	
2	Q	
~	0	
2	9	
3	0	
2	1	
2	-	
3	2	
3	3	
2	٨	
2	+	
3	5	
3	6	
2	-	
3	1	
3	8	
ຊ	a	
2	2	
4	υ	
4	1	
1	2	
+	~	
4	3	
4	4	
,	Ē	
4	0	
4	6	
Δ	7	
Ţ	6	
4	8	
4	9	
5	n	
2	2	
5	1	
5	2	
F	2	
0	3	
5	4	
5	5	
	2	
C	o	
5	7	
5	R	
2	2	
n	ч	

60

585 microfossil assemblages and absence of macrofossils. It is on this unit, however, that a glacimarine
586 or a glacilacustrine interpretation hinges.

587 A temperate estuarine and saltmarsh origin for the Celtic Sea laminated clay sequences (Unit 588 III) can be discounted on litho- and bio-stratigraphic grounds (see §5.1.1 above). Furthermore, a fully 589 glacimarine origin (deep water, full salinities) is unlikely given the absence of critical in situ macro-590 and micro-fossils. Barren glacimarine sediments have been recorded from several modern tidewater 591 glacier and fjord delta settings in Alaska and Greenland (e.g. Cowan & Powell 1990; Gilbert et al. 592 1998, 2002; Desloges et al. 2002) where high sedimentation rates prevent the establishment of 593 benthic communities (Korsun & Hald 1998; Jaeger & Nittrouer 1999). In all such cases, however, a 594 steep environmental gradient exists from immediately proximal to more distal settings; bioturbated 595 sediments being encountered within only four kilometres of the ice front or fjord head. Nor should 596 planktonic material be excluded from deposition in such settings, especially where tidal pumping is 597 significant (Cowan et al. 1998, 1999; Gilbert et al. 2002). Indeed, ice-proximal sediments including 598 water-lain diamictons and laminated sequences from the deglacial Barents Sea (Murdmaa et al. 599 2006) and the Canadian High Arctic (Pieńkowski et al. 2012), where rapid deposition from sediment 600 plumes can be inferred, are nonetheless marked by a sparse but recognizable in situ glacimarine 601 microbiota. In the Celtic Sea, in situ arctic and glacimarine species have been noted from the south 602 where they occur in lithostratigraphically similar units (Melville Laminated Clay; Scourse et al. 1990) 603 to Unit III. Fauna reported by Scourse et al. (1990) include ostracods (Rabilimis mirabilis, Krithe 604 glacialis, Cytheropteron montrosiense), abundant foraminifera (Islandiella helenae, Islandiella 605 islandica) and the boreo-arctic mollusc Yoldiella fraterna. These definitive glacimarine indicators all 606 occur south of the postulated LGM southern maximum for the BIIS on the Celtic Sea shelf, laminated 607 and massive clays north of the ice limit (Unit III this study) being effectively barren of macrofossils, 608 foraminifera, and marine diatoms, and containing ecologically incompatible palynomorphs. Whilst 609 the transition from fossil-rich sediments in the south to near-barren in the central and northern 610 Celtic Sea may indeed reflect a steep glacimarine environmental gradient, the spatial consistency of

Unit III laminated muds both within and between cores may challenge this interpretation. Furthermore, the absence of any successional changes in Unit III micro- or macrobiota that could be expected during progressive northward ice retreat from the Celtic and Irish seas is also problematic. Two competing hypotheses thus remain that can be invoked to explain the formation of the Unit III laminated clays present in the CDB and across the broader northern and central shelf of the Celtic Sea: a low sea-level model with deposition of such laminated sequences in a glacilacustrine system impounded within the CDB and in other smaller satellite water bodies on a subaerially exposed shelf; or a higher sea-level model with deposition of fine grained sediments in a broad shallow glacimarine embayment, where very high sedimentation rates effectively prevent primary production. 5.2.1 The glacilacustrine hypothesis In this scenario, low relative sea-level in the central Celtic Sea (Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001; Uehara et al. 2006) results in sufficient continental shelf exposure during and subsequent to deglaciation to isolate the CDB and other bathymetric lows from the North Atlantic. Rapid sediment plume deposition and iceberg rafting associated with the northward retreat of the ice margin results in emplacement of massive and laminated mud sequences with a minor dropstone component (Unit III). In situ productivity within the glacilacustrine system is inhibited due to high turbidity, rapid sediment accumulation rates, and low temperatures (Korsun & Hald 1998; Jaeger & Nittrouer 1999). Thus, aside from an extremely sparse freshwater diatom component, all biota noted from Unit III are glacially reworked from older temperate to glacimarine sediments overridden by the ISIS. Water depths within such a postulated CDB lake would have been shallow, not exceeding 30 m (based on modern bathymetry) whilst the rhythmicity seen in some of the Unit III muds would be a function of variable sediment and meltwater input events (Cowan et al. 1999; Ó Cofaigh & Dowdeswell 2001). The extent of such a glacilacustrine system is hard to determine, but would have occupied the CDB and could have conceivably extended through St George's Channel in

Boreas

637	to the Irish Sea in contact with a rapidly retreating ice margin. Separate or connected lesser lake
638	basins would also have occurred on the exposed shelf within the ISIS ice limit. Assuming lake
639	isolation and shelf exposure during ice retreat, lacustrine conditions would have persisted from ~21-
640	22 cal ka BP (assuming Celtic Sea and Isles of Scilly ice maxima are coeval; McCarroll et al. 2010) until
641	the reconnection with the North Atlantic due to the eustatically-driven transgression sometime prior
642	to 13.9 cal ka BP. With the establishment of marine conditions, tidal current and stormwave erosion
643	and winnowing of Unit III glacilacustrine sediments would have been significant (Uehara et al. 2006;
644	Neill <i>et al.</i> 2009; Scourse <i>et al.</i> 2009). Wingfield (1996) estimates that up to 15 m of stony
645	glacimarine/glacilacustrine muddy sediment may be lost before a sufficient armouring lag of
646	winnowed dropstones and accumulated molluscan fragments (Unit II) develops that inhibits further
647	erosion.
648	
649	5.2.2 The glacimarine hypothesis
650	Assuming the retreat of the ISIS from the Celtic Sea shelf in a tidewater setting, the CDB and
651	adjacent shelf would have formed a shallow (maximum 30-40 m given modern bathymetry and
652	elevation of southern sill; Peltier et al. 2002), broad glacimarine embayment fed by meltwater from
653	the retreating ice margin characterized by direct iceberg calving. As in the glacilacustrine hypothesis,
654	exceptionally high sedimentation rates can be expected, with fine-grained deposition from sediment
655	plumes and minor dropstone rafting. Rates of 5-10 mm per annum have been reported for modern
656	fjords (Cowan and Powell 1991; Gilbert et al. 1998; Desloges et al. 2002) with extreme rates of >4
657	mm per day recorded in systems influenced by surging glaciers (Gilbert et al. 2002). As in the
658	glacilacustrine hypothesis, such high sedimentation rates and turbidity would have significantly
659	curtailed any in situ primary productivity preventing the establishment of macrofaunal benthic
660	communities (Korsun & Hald 1998; Gordillo & Aitken 2001). The majority of microfossils would thus
661	be glacially/glaciofluvially reworked from earlier Irish and Celtic sea temperate and glacimarine

662 sequences. Under glacimarine conditions, some microfossils could be expected to have been

Page 28 of 65

Boreas

2
3
4
5
6
7
ן 8
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
34
25
20
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

663	advected from more distal areas on the open shelf (cf. Murdmaa et al. 2006), however, given the
664	durability and resistance to damage of organic-walled microfossils (in particular dinocysts)
665	distinguishing between wholly reworked mixed temperate and glacimarine, and dominantly
666	reworked mixed temperate and glacimarine (but with a minor in situ glacimarine component)
667	assemblages is problematic. Salinities may also have been low due to significant meltwater flux into
668	the basin. Nonetheless, with a connection to the North Atlantic, a tidal influence within the
669	embayment should be expected, though high bed shear stresses at this time would have most likely
670	prevented the deposition of glacimarine fines (Uehara et al. 2006; Scourse et al. 2009). Subsequent
671	sea-level increase associated with enhanced stormwave and tidal current erosion would have
672	resulted in erosion and winnowing of Unit III and generation of the Unit II lag deposit in a similar
673	fashion to the glacilacustrine hypothesis.
674	To accommodate the apparent uniformity seen in the Unit III litho- and bio-stratigraphy,
675	such a glacimarine model must be characterised by the rapid break-up and retreat of the ISIS
676	northwards from the basin rather than a gradual and sequential ice retreat. Successional changes
677	with increasing ice-distal conditions (Thomsen & Vorren 1986; Korsun & Hald 1998; Jaeger &
678	Nittrouer 1999; Gilbert et al. 2002) are not evidenced in the Unit III waterlain glacigenic sediments.
679	Indeed, the relative rapid retreat of the ice margin from the Isles of Scilly to Anglesey (<3000 years;
680	Scourse et al. 2009b; McCarroll et al. 2010) is also consistent with this hypothesis. A previously
681	proposed (Scourse et al. 1990) deglacial iceshelf during Unit III deposition is hard to justify on
682	glaciological and palaeotidal grounds. Early deglacial water depths would have been too shallow and
683	with too greater tidal amplitude (Uehara et al. 2006; Scourse et al. 2009) to support a floating ice
684	margin (Benn & Evans 2010) until the mid to late Holocene (e.g. Heyworth & Kidson 1982; Shennan
685	et al. 2006; Brooks et al. 2008; Massey et al. 2008). Furthermore, Unit III sediments are not
686	consistent with extensive undermelt and rapid coarse clastic deposition from a debris-rich mid-

687 latitude iceshelf (Powell 1984; Syvitski 1991, Ó Cofaigh & Dowdeswell 2001; Post *et al.* 2007).

688

Boreas

3
4
5
5 6
0
1
8
9
10
11
10
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34 05
35
36
37
38
39
10
-⊤∪ //1
41
42
43
44
45
46
47
τι / Q
40
49
50
51
52
53
54
55
55
30
5/
58
59
60

689	5.3 Critique of	f Glacimarine	and Glacilacustrin	e Hypotheses
-----	-----------------	---------------	--------------------	--------------

690 Both proposed hypotheses broadly accommodate the available data, making a determination 691 between either model problematic. Both predict rapid ice-distal laminated to massive fine grained 692 subaqueous sedimentation with a minor ice rafted coarse component, deposited under low energy 693 conditions. Both also require rapid deglaciation of the Celtic Sea to explain the lack of lateral or 694 vertical facies variation evident in the glacial waterlain sediments. Broadly analogous conditions 695 (though under greater water depths) persisted in the deglacial Barents Sea (Murdmaa et al. 2006), 696 and such a rapid deglaciation in a marine or lacustrine setting has been previously inferred for the 697 Celtic and southern Irish Sea (Scourse et al. 2009; McCarroll et al. 2010). This apparent rapid ice 698 retreat may indeed favour the glacimarine hypothesis whereby rising glacio-eustatic sea-levels 699 induce the destabilization and break-up of the ISIS during deglaciation, a forcing mechanism not 700 accommodated by a glacilacustrine model. Nonetheless, the presupposition of a deglacial tidal 701 connection to the North Atlantic across the Celtic Sea shelf is hard to reconcile with the fine-grained 702 nature of the Unit III sediments during a period when enhanced tidal bed shear vectors are 703 anticipated (Uehara et al. 2006; Neill et al. 2009; Scourse et al. 2009), whilst an iceshelf can be ruled 704 out on glaciological and palaeotidal grounds. 705 Biostratigraphically, both models predict the deposition of significant quantities of 706 palynomorphs, reworked from pre-existing marine and glacimarine sediments overridden by the 707 advancing ISIS, with minimal in situ production under high turbidity and low salinity. In both 708 scenarios, larger, calcareous, or more delicate materials are considered less likely to be preserved. 709 Glacigenic sediments, including glacilacustrine sequences, containing reworked marine micro- and 710 macro-fossils are common along the Celtic and Irish sea margins. Tills on the Llŷn Peninsula contain 711 reworked foraminifera derived Pleistocene temperate and glacimarine sequences overridden by the 712 ISIS (Austin & McCarroll 1992) whilst similar foram-containing deposits along the eastern Irish coast 713 are also now considered subglacial till (McCarroll 2001) rather than glacimarine (Haynes et al. 1995). 714 At Killiney, Ireland, marine mollusc in presumed ice-proximal glacimarine diamictons (sensu Eyles &

1
2
2
3
4
5
6
7
1
8
9
10
11
40
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
35
26
30
37
38
39
40
40
41
42
43
44
45
40
46
47
48
49
50
50
51
52
53
54
55
55
56
57
58
50
29
60

715	McCabe 1989), are now considered reworked within terrestrial tills (Rijsdijk et al. 2010).
716	Glacilacustrine sequences on the Isle of Man (Thomas et al. 2004) show either barren or disparate
717	reworked foraminiferal assemblages, as do ice-marginal lacustrine sequences from Glacial Llyn Teifi
718	in SW Wales (Riding 1997; Fletcher & Siddle 1998; Hambrey et al. 2001; Etienne et al. 2006). There is
719	thus clear evidence for glacial transport and lacustrine redeposition of reworked marine biota
720	associated with the glaciation of the Irish and Celtic seas. In the present study, this is supported by
721	the occurrence of a sparse reworked dinocyst and NPP assemblage within the basal Melville Till
722	diamicton (Unit IIIb) in CS-3 which strongly resemble those from Unit III (Melville Laminated Clay)
723	waterlain laminated muds. An ice-proximal glaciaqueous, as opposed to subglacial lodgement, origin
724	of the diamicton cannot be dismissed given the liquidity index of the samples (Lambert & Khwaja
725	1978) at the base of core CS-3 where overconsolidation during core penetration is likely. The
726	apparent absence of any macro or micro marine indicators, aside from highly preservable
727	palynomorphs with a strong potential for reworking, and the presence of extremely rare freshwater
728	diatoms further argues in favour of a lacustrine system. Additionally, even under conditions of very
729	rapid marine deglaciation, lateral environmental gradients influencing benthic and planktonic
730	community structure, and thus preserved macro- and microfossil assemblages, should be expected
731	(Korsun & Hald 1998; Jaeger & Nittrouer 1999). This is especially true of large areas such as the
732	central and northern Celtic Sea where, under rapid ice retreat, ice distal locations may have been up
733	to 200 km from the calving margin. Furthermore, with increasingly distal glacimarine conditions a
734	succession from early colonizers to an established boreo-arctic flora and fauna should be observed
735	vertically through Unit III samples (Thomsen & Vorren 1986). Neither of these patterns is evident.
736	Nonetheless, given the potential for very low salinities, high sedimentation rates, and high
737	meltwater efflux, and thus minimal in situ production, the glacimarine hypothesis cannot be wholly
738	ruled out on biostratigraphic grounds.
739	Timing of deglaciation in the Irish and Celtic seas, and the sea-levels in which it occurred,
740	remain debatable. A deglacial marine limit of 30 m asl is described by Clark et al. (2004) and McCabe

Boreas

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
10
+3 50
50
51
52
53
54
55
56
57
58
50
60
111

741	<i>et al.</i> (2005) from Kilkeel on the northeast Irish coast with deglacial ¹⁴ C dates between 21 and 19 ka
742	BP. This, however, is exceptionally early, and hard to reconcile with other data suggesting much later
743	deglaciation this far north (McCarroll et al. 2010). Furthermore, the Kilkeel chronology is based on
744	bulk foraminiferal AMS ¹⁴ C dates in an environment where the admixture of resuspended reworked
745	pre-LGM material is highly likely (<i>cf.</i> Austin & McCarroll 1992; Thomas <i>et al.</i> 2004; Pieńkowski <i>et al.</i>
746	submitted), as indicated by re-deposited molluscs in the same unit (Rijsdijk et al. 2010). McCabe et
747	al. (2005) suggest a later lowstand between 18 and 16.7 ka BP (but 13.4 cal ka BP and 30 m below
748	modern sea-level in Belfast Lough according to Kelley et al. 2006) attributable to marked isostatic
749	rebound, though again, the chronology must be regarded with caution. From North Wales into the
750	Celtic Sea, deglaciation takes place with sea-levels lower than present on both Irish and British
751	coastlines (e.g. Rijsdijk et al. 2010; Roberts et al. 2011). This is counter to earlier work suggesting
752	glacial and deglacial sea-levels higher than present along the Irish coast of the southern Irish Sea in
753	particular (e.g. Eyles & McCabe 1989; McCabe & Ó Cofaigh 1995; McCabe et al. 1998; McCabe 2008).
754	Well constrained dates from the central Irish Sea place deglaciation around 19 ka BP with dates of
755	18.1-19.2 cal ka BP for Holyhead Mountain (Anglesey) and 19 14 C ka BP for Dundalk Bay (McCarroll et
756	al. 2010).
757	GIA models (Lambeck 1991, 1993, 1995, 1996; Lambeck & Purcell 2001) suggest the

758 significant exposure of continental shelf in the Celtic Sea following deglaciation and the persistence 759 of an isolated CDB lacustrine system. Deglaciation northwards through the Irish Sea in contact with a 760 large standing water body is evidenced by swath bathymetry from north of Anglesey (van 761 Landeghem et al. 2009). Given the modern bathymetry, even accounting for isostatic rebound and 762 Holocene erosion and deposition, such conditions might have extended southwards through St 763 Georges Channel into the CDB. Furthermore, deglacial dates of 20.9-22.1 cal ka BP (Scourse & Furze 764 2001; McCarroll et al. 2010) from the northern margin of the Isles of Scilly (southern ISIS limit) 765 provide an approximate age on Celtic Sea deglaciation. Both hypotheses can be accommodated by 766 the available deglacial and sea-level data from the Irish and Celtic Sea basins. The age of 13.9 cal ka

767	BP from CD-8 for the onset of marked marine erosion and bioclastic lag generation is a minimum
768	value given the potential for time averaging and condensation in such lag sediments. Remnant (and
769	confluent) British and Irish ice remained over the North Channel between NE Ireland and SW
770	Scotland until after 16 cal ka BP (e.g. Shennan <i>et al.</i> 2006).
771	Geomorphically, the glacilacustrine hypothesis is harder to accommodate than the
772	glacimarine model. While the glacio-isostatic rebound models of Lambeck (1995, 1996, in Uehara <i>et</i>
773	al. 2006), Lambeck & Purcell (2001), and Peltier et al. (2002) predict an isolation basin in the CDB
774	during low postglacial sea-levels, consistent with a glacilacustrine interpretation of Unit III in this
775	area (cores CD-1 to -9), similar Unit III deposits on the open shelf south of the CDB sill are harder to
776	explain (cores CS-1 to -3). If glacilacustrine, an extensive area of subaerially exposed shelf
777	characterised by moraine-dammed and kettle lake basins peripheral to the main CDB system must
778	be invoked, extending southwards to at least the location of CS-3 (VE 49/-09/044) and the modern
779	120m isobath. Despite the fact that there exists little stratigraphic or seismic evidence from the
780	Celtic Sea to support this, the latest Lambeck GIA model (in Uehara et al. 2006; Scourse et al. 2009)
781	does depict sufficiently extensive subaerial shelf exposure from 21 ka BP until after 15 ka BP lending
782	some credence to this hypothesis. Furthermore, the model predicts marine ingression and final
783	breaching of the CDB's southern sill shortly before 14 ka BP, consistent with the oldest marine dates
784	of 13.9 cal ka BP from the erosional lag of Unit II. This, too, is reconcilable with the deglacial records
785	farther north in the Irish Sea if problematic deglacial foraminiferal dates are discounted.
786	

5.3 Implications

788 5.3.1 Irish Biogeography

789 A lacustrine system (and thus a Celtic Sea landbridge) before 13.9-14 cal ka BP has direct

- 790 implications for Ireland's postglacial biogeography. Irish faunas from the late glacial and early
- 791 Holocene are impoverished compared to those from the same time period in Britain (Stuart 1977,
- 792 1995; Yalden 1982; Stuart & van Wijngaarden-Bakker 1985; Woodman *et al.* 1997; Coard &

Boreas

793	Chamberlin 1999). The impoverishment and arrival times of different species into Ireland has been
794	used to argue both for and against the existence of landbridges. Some authors (Stuart & van
795	Wijngaarden-Bakker 1985; Dobson 1994; Stuart 1995; Lynch 1996; Stewart & Lister 2001;
796	Mascheretti et al. 2003; Teacher et al. 2009) conclude that no terrestrial link existed since before the
797	last cold stage. A reduced pre-Midlandian/Devensian fauna either persisted in cryptic ice-free refugia
798	(unsupported by glaciological evidence), or was derived from terrestrial taxa crossing marine
799	channels between Britain and Ireland.
800	The potentially glacilacustrine sequences of the Celtic Sea, in combination with latest GIA
801	model of Lambeck (in Uehara et al. 2006) counter arguments of Irish insularity, suggesting an
802	ephemeral isthmus prior to the Younger Dryas (~13 000 BP). The distribution of taxa in southern
803	Ireland and mainland Europe favours an early southern Celtic Sea immigration corridor (Preece et al.
804	1986; Seyd 1992; Gleed-Owen 1997; Woodman <i>et al.</i> 1997) lending credence to the glacilacustrine
805	hypothesis.
806	
807	5.3.2 Celtic Sea Linear Sand Ridges (LSRs)
808	If the glacilacustrine model proposed here is accepted, it implies the existence of not only a CDB lake
809	system, but numerous shallow peripheral kettle and moraine-dammed lakes across the recently
810	deglaciated subaerial shelf. The occurrence of glaciaqueous units interpretable as glacilacustrine in
811	BGS vibrocores VE 49/-09/044 (Scourse <i>et al.</i> 1990, 1991; core CS-3 this study) and VE 50/-07/141
812	(core CS-1 this study) south of the CDB on the open shelf is consistent with this model. Furthermore,
813	a glacilacustrine interpretation of Unit III muds in core CS-3 (VE 49/-09/044) has implications for
814	understanding the development of the Celtic Sea LSR system. This vibrocore was recovered from the
815	flanks of one of the most northerly LSRs and its interpretation as a lodgement till and glacimarine
816	sequence draping an earlier LSR deposit is critical for the hypothesis that LSR development predated
817	the MIS2 advance of the ISIS (Bouysse et al. 1976; Pantin & Evans 1984; Belderson et al. 1986;
818	Scourse et al. 1990, 1991; Reynaud et al. 1995, 1999). However, recent modelling and seismic data

819	suggest that though some LSRs may indeed be cored by older deltaic and estuarine sediments, the
820	main period of LSR development was between 20 and 12 ka BP under rising eustatic sea-levels and
821	sediment cannibalization from the extensive midshelf depocentres of the Fleuve Manche estuary
822	and the ISIS fan (Lericolais et al. 2003; Reynaud et al. 2003; Scourse et al. 2009).
823	The laminated sediments of Unit III in core CS-3 (VE 49/-09/044; Melville Laminated Clay of
824	Scourse et al. 1990, 1991) are clearly different to similar deposits to the south, with an absence of
825	marine macrofossils, and microfossil assemblages suggestive of glacilacustrine redeposition. If this
826	core thus records glacilacustrine rather than glacimarine conditions, and if those glacigenic
827	sediments (Units III and IIIb; Melville Laminated Clay and Melville Till) outcrop from the side of the
828	LSR rather than drape it, then a subaerial interval on the central Celtic Sea shelf followed by
829	inundation and LSR development as outlined by Scourse et al. (2009) is plausible and consistent with
830	the glacilacustrine model. However, until more detailed high resolution seismic data and long core
831	records are available from the area this aspect of the hypothesis will remain untested.
832	
833	5.3.3 Deglacial Styles
834	The maximum extent of the LGM BIIS in the Celtic Sea is yet to be established (Sejrup et al. 2005)
835	though it is thought to have terminated in a tidewater margin south of 49°30'N (Scourse et al. 1990,
836	1991; Scourse & Furze 2001). While surging behaviour across a deformable bed has been invoked for
837	the development of the ISIS lobe in the Celtic Sea (Scourse & Furze 2001; Ó Cofaigh & Evans 2001a,
838	b, 2007; Roberts et al. 2007; McCarroll et al. 2010), a glacilacustrine hypothesis would imply the
839	retreat of a terrestrial margin northwards across the Celtic Sea shelf before the establishment of a
840	lacustrine calving margin in the CDB and a connected southern Irish Sea lake system. However, once
841	established in the topographic depression of the CDB and St George's Channel, calving of the ISIS
842	may have been particularly rapid as deeper water conditions (a function of bathymetry and
843	increased isostatic depression) would be encountered northward. Rapid deglaciation is indicated by

Boreas

845	Anglesey (18.1-19.2 cal ka BP; McCarroll et al. 2010). Van Landeghem et al. (2009) presents detailed
846	swath bathymetry evidence of subaqueous deglacial bedforms from west of Anglesey consistent
847	with ice retreat in both lacustrine and marine settings.
848	
849	5.3.4 Unresolved Issues
850	Both the proposed glacimarine and glacilacustrine hypotheses for the deglacial and post glacial Celtic
851	Sea remain speculative. In particular, the high preservation potential of organic-walled microfossils
852	(primarily dinoflagellate cysts and foram linings) makes the determination of low productivity
853	glacimarine and glacilacustrine systems subject to the resuspension and redeposition of older glacial
854	reworked marine sediments problematic. We are unaware of any systematic assemblage structure
855	or taphonomic studies of organic-walled microfossils from marine-derived tills and glacilacustrine
856	sediments around the margins of the Celtic and Irish seas or analogous environments. The degree to
857	which such microfossils can be reworked with little or no morphological modification thus remains
858	undetermined.
859	If the glacimarine as opposed to the glacilacustrine model is accepted, the absence of <i>in situ</i>
860	micro- and macro-palaeontological materials from the Unit III mud deposits within the BIIS limits as
861	opposed to the rich <i>in situ</i> glacimarine faunas in similar deposits beyond needs to be explained,
862	especially given the inferred time-transgressive nature of such deposits during ice retreat.
863	Furthermore, the degree to which Unit III has been eroded and winnowed, potentially resulting in
864	the loss of indicative (and conceivably fossiliferous) ice-distal glaciaqueous horizons remains
865	unquantified. There also remains a mismatch between palaeotidal models (Uehara et al. 2006)
866	suggesting elevated peak bed shear stresses during the immediate deglacial period and the fine-
867	grained nature of those deglacial sediments (Unit III this study, Melville Laminated Clays of Scourse
868	<i>et al.</i> 1990, 1991).
869	Clearly, there is a pressing need to further refine and test the competing hypotheses of
870	Celtic Sea shelf deglacial and postglacial evolution. In particular, if the Unit II muds are indeed

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
20	
24	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

871

871	lacustrine within the central and northern Celtic Sea regions, how extensive was the implied
872	subaerially exposed shelf, and when did the final eustatically-driven separation between Britain and
873	Ireland occur? Building on this study, and the earlier work of Scourse et al. (1990, 1991), a detailed
874	multiproxy micro- and macro-palaeontological analysis of all units of the Melville Formation
875	(including the laminated clays and till) from the "proven" glacimarine units on the shelf edge
876	through to the Unit III sequences in the northern CDB is required to examine if lateral biofacies
877	variations are or are not apparent. Additionally, detailed microstratigraphic analysis of the laminated
878	sequences across the Celtic Sea shelf, as well as geochemical or biogeochemical analysis of those
879	glaciaqueous deposits may further advance the exploration of the lacustrine and marine deglacial
880	hypotheses.
881	Until then, this study represents the first systematic, critical analysis of Celtic Sea deglacial to
882	postglacial environments highlighting the complexities inherent where a major icestream overriding
883	previous marine sediments terminates in, and retreats from, a mid-shelf setting. Given the far-
884	reaching implications for the Quaternary of the British Isles associated with either hypothesis, this
885	work raises crucial questions regarding the style and timing of deglaciation, and sea-levels in which
886	this occurred.
887	

888 6. Conclusions

889 The character of late Pleistocene deglaciation in the central and northern Celtic Sea (including the 890 Celtic Deep Basin) remains unresolved. Based on the absence of (glaci)marine macrofossils, diatoms, 891 and foraminifera, and the presence of redeposited and environmentally incompatible dinocysts in 892 regionally extensive deglacial waterlain deposits, two competing hypotheses are proposed: 1) a 893 glacimarine model with the rapid retreat of an Irish Sea Ice Stream calving margin in contact with the 894 sea northwards across the shelf into St George's Channel; 2) a glacilacustrine model with initially 895 subaerial ice retreat exposing a system of ephemeral lacustrine basins across the shelf and the 896 northward calving of the ice margin in an extensive Celtic Deep lake basin, potentially extending

Boreas

0		
2 3 4	897	northwards into the southern and central Irish Sea. In the latter model, all encountered
4 5 6	898	palynomorphs are considered redeposited from glacial (and or glacifluvially) reworked older marine
7 8	899	sequences in the Celtic and Irish seas.
9 10	900	Based on the absence of any dated (molluscan) macrofossils older than 13.5-14.2 cal ka BP
11 12	901	from extensive overlying erosional lag deposits and the apparent agreement with the GIA
13 14	902	simulations of Lambeck (in Uehara et al. 2006 and Scourse et al. 2009), the glacilacustrine model is
15 16	903	favoured. However, until sufficient data is available to test either hypothesis further, such an
17 18	904	interpretation must remain speculative. Given the important implications that this has for
19 20 21	905	understanding the late Quaternary environmental evolution of the NW European shelf, there
21 22 23	906	remains a need for further research to establish the nature and timing of Celtic Sea deglaciation.
24 25	907	
26 27	908	Acknowledgments
28 29	909	MFAF gratefully acknowledges the receipt of a NERC PhD research studentship grant
30 31	910	(GT04/97/289/ES) and two NSERC-funded radiocarbon allocations (746/0898; 814/0999) in support
32 33 24	911	of this research. Also gratefully acknowledged is the award of an RSACAF grant and a Professional
34 35 36	912	Development Conference Attendance grant from Grant MacEwan University to MFAF. Staff at the
37 38	913	NERC Radiocarbon Facility in East Kilbride, Scotland, in particular Charlotte Bryant, Brian Miller, and
39 40	914	Margaret Currie must be thanked for their valued discussions regarding radiocarbon dating issues.
41 42	915	Thanks must also be extended to the British Geological Survey for making core materials central to
43 44	916	this study available, in particular Helen Glaves, Graham Tulloch, and the late Robin Wingfield.
45 46	917	Douglas Peacock, Vera Pospelova, Kenneth Mertens, John England, and David Evans are also highly
47 48 49	918	deserving of thanks for fruitful discussions essential to the development of this paper. AJP wishes to
50 51	919	thank Charlie Schweger and Harvey Friebe at the University of Alberta for the generous use of their
52 53	920	Environmental Archaeology Laboratory in the preparation and processing of dinoflagellate cysts and
54 55	921	other non-pollen playnomorphs. This is a contribution to the Climate Change Consortium of Wales
56 57 58	922	(C3W).
20		

923	
924	References
925	Andrews, J.T., Jennings, A E., MacLean, B., Mudie, P.J., Praeg, D. & Vilks, G. 1991: The surficial
926	geology of the Canadian eastern Arctic and Polar continental shelves. Continental Shelf
927	Research 11, 791–819.
928	Appeltans, W., Bouchet, P., Boxshall, G.A., Fauchald, K., Gordon, D.P., Hoeksema, B.W., Poore,
929	G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C. & Costello, M.J. (eds) 2011: World Register of
930	Marine Species. Accessed at http://www.marinespecies.org on 2011-12-28.
931	Austin, W.E.N. & McCarroll, D. 1992: Foraminifera from the Irish Sea glacigenic deposits at
932	Aberdaron, western Lleyn, North Wales: palaeoenvironmental implications. Journal of
933	Quaternary Science 7, 311-317.
934	Austin, W.E.N. & Scourse, J.D. 1997: Evolution of seasonal stratification in the Celtic Sea during the
935	Holocene. Journal of the Geological Society of London 154, 249-256.
936	Bathman, U.V., Noji, T.T. & von Budengen, B. 1991: Sedimentation of pteropods in the Norwegian
937	Sea in autumn. Deep-Sea Research 38, 1341-1360.
938	Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L. & Juggens, S.
939	2001: Diatoms. In Smol, J.P., Birks, H.J.B. & Last, W.M. (eds.): Tracking Environmental Change
940	Using Lake Sediments, Volume 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic
941	Publishers, Dordrecht, 155-202.
942	Belderson, R.H., Pingree, R.D. & Griffiths, D. 1986: Low sea-level tidal origin of Celtic Sea sand banks:
943	Evidence from numerical modelling of M2 tidal streams. <i>Marine Geology</i> 73, 99-108.
944	Benn, D.I. & Evans, D.J.A. 2010: Glaciers and Glaciation. Hodder Education Publishers, London.
945	Bouysse, P., Horn, R., Lapierre, F. & Le Lann, F. 1976: Étude des Grands Bancs de Sable du Sud-est de
946	la Mer Celtique. Marine Geology 20, 251-275.

Boreas

947	Brooks, A.J., Bradley, S.L., Edwards, R.J., Milne, G.A., Horton, B. & Shennan, I. 2008: Postglacial
948	relative sea-level observations from Ireland and their role in glacial rebound modelling. Journal
949	of Quaternary Science 23, 175–192.
950	Chiverrell R.C. & Thomas G.S.P. 2010: Extent and timing of the Last Glacial Maximum (LGM) in Britain
951	and Ireland: a review. Journal of Quaternary Science 25, 535–549.
952	Clark, P.U., McCabe, A.M., Mix, A.C. & Weaver, A.J. 2004: Rapid Rise of Sea Level 19,000 Years Ago
953	and Its Global Implications. Science 304, 1141-1144
954	Coard, R. & Chamberlin, A.T. 1999: The nature and timing of faunal change in the British Isles across
955	the Pleistocene/Holocene transition. <i>The Holocene 9</i> , 372-376
956	Cowan, E.A. & Powell, R.D. 1990: Suspended sediment transport and deposition of cyclically
957	interlaminated sediment in a temperate glacial fjord, Alaska, USA. <i>In</i> Dowdeswell, J.A. &
958	Scourse, J. D. (eds): Glacimarine Environments: processes and sediments. Glacimarine
959	Environments: Processes and Sediments, 75–89. Geological Society of London. Special
960	Publication 53.
960 961	Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites
960 961 962	Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i> , 40-48.
960 961 962 963	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in
960 961 962 963 964	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-
960 961 962 963 964 965	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126.
960 961 962 963 964 965 966	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i>
960 961 962 963 964 965 966 966	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109- 1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i> Preece, R.C. (ed.) Island Britain: a Quaternary perspective. <i>Geological Society Special Publication</i>
960 961 962 963 964 965 966 967 968	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i> Preece, R.C. (ed.) Island Britain: a Quaternary perspective. <i>Geological Society Special Publication 96</i>, 243-267.
960 961 962 963 964 965 966 966 968 969	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i> Preece, R.C. (ed.) Island Britain: a Quaternary perspective. <i>Geological Society Special Publication 96</i>, 243-267. Desloges, J.R., Gilbert, R., Nielsen, N., Christiansen, C., Rasch, M., Whlenschlager, R., 2002: Holocene
960 961 962 963 964 965 966 967 968 969 969	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i> Preece, R.C. (ed.) Island Britain: a Quaternary perspective. <i>Geological Society Special Publication 96</i>, 243-267. Desloges, J.R., Gilbert, R., Nielsen, N., Christiansen, C., Rasch, M., Whlenschlager, R., 2002: Holocene sedimentary environments in fiords of Disko Bugt, West Greenland. <i>Quaternary Science Reviews</i>
 960 961 962 963 964 965 966 967 968 969 970 971 	 Publication 53. Cowan, E.A., Cai, J., Powell, R.D., Seramur, K.C., Spurgeon, V.L., 1998. Modern tidal rhythmites deposited in a deepwater estuary, southeast Alaska. <i>Geomarine Letters 18</i>, 40-48. Cowan, E., Seramur, K.C., Cai, J., Powell, R.D., 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. <i>Sedimentology 46</i>, 1109-1126. Coxon, P. & Waldren, S. 1995: The floristic record of Ireland's Pleistocene temperate stages. <i>In</i> Preece, R.C. (ed.) Island Britain: a Quaternary perspective. <i>Geological Society Special Publication 96</i>, 243-267. Desloges, J.R., Gilbert, R., Nielsen, N., Christiansen, C., Rasch, M., Whlenschlager, R., 2002: Holocene sedimentary environments in fiords of Disko Bugt, West Greenland. <i>Quaternary Science Reviews 21</i>, 947-963.

л	
4	
5	
6	
7	
1	
8	
g	
4	^
I	U
1	1
1	2
1	~
1	3
1	4
1	5
1	5
1	6
1	7
1	o
1	0
1	9
2	0
~	4
2	1
2	2
2	2
2	ა
2	4
2	5
~	2
2	6
2	7
-	0
2	Ø
2	9
2	Λ
2	0
3	1
3	2
2	2
3	3
3	4
ຊ	5
2	5
3	6
3	7
ъ 2	o
J	0
3	9
Δ	0
7	4
4	1
4	2
۸	2
4	5
4	4
4	5
Å	č
4	ю
4	7
Λ	Q
+	0
4	9
5	0
2	4
5	1
5	2
Ē	3
- 3	0
2	
5	4
5	4
55	4 5
5 5 5 5	4 5 6
5555	4 5 6 7
55555	4 5 6 7
55555	4 5 6 7 8
5555555	4 5 6 7 8 9

1 2

3

972 de Vernal, A., Bilodeau, G., Hillaire-Marce, C. & Kassou N. 1992: Quantitative assessment of

- 973 carbonate dissolution in marine sediments from foraminifer linings vs. shell ratios: Davis Strait,
- 974 northwest North Atlantic. *Geology 20*, 527 -530.
- 975 Devoy, R.J. 1983: Late Quaternary shorelines in Ireland: an assessment for their implications for
- 976 isostatic land movement and relative sea-level changes. *In* Smith, D.E. & Dawson, R.G. (eds.):
- 977 Shorelines and Isostasy. Institute of British Geographers, *Special Publication 16*, 227-254.
- 978 Devoy, R.J. 1985: The problem of a Late Quaternary landbridge between Britain and Ireland.
 - 979 *Quaternary Science Reviews* 4, 43-58.
 - 980 Devoy, R.J. 1986: Possible Land-bridges Between Ireland and Britain: a Geological Appraisal. In
- 981 Sleeman, D.P., Devoy, R.J. & Woodman, P.C. (eds.): Proceedings of the Postglacial Colonization

982 Conference. Irish Biogeographical Society, *Occasional Publication* 1, 15-26.

- 983 Devoy, R.J. 1995: Deglaciation, Earth crustal behaviour and sea-level changes in the determination of
- 984 insularity: a perspective from Ireland. *In* Preece, R.C. (ed.): Island Britain: a Quaternary

985 perspective. Geological Society of London, *Special Publication 96*, 181-208.

- 986 Dobson, M. 1994: Patterns of distribution in Japanese land mammals. *Mammal Review 24*, 91-111.
- 987 Dodge, J.D. & Harland, R. 1991: The Distribution of Planktonic Dinoflagellates and Their Cysts in the
- 988 Eastern and Northeastern Atlantic Ocean. *New Phytologist* 118, 593-603.
- 989 England, J., Dyke, A.S., Coulthard, R.D., McNeely, R., Aitken, A., 2012: The exaggerated radiocarbon
- 990 age of deposit-feeding molluscs in calcareous environments. *Boreas 10*,
- 991 1111/j.15023885.2012.00256.x.
- 992 Etienne, J.L., Jansson, K.N., Glasser, N.F., Hambrey, M.J., Davies, J.R., Waters, R.A., Maltman, A.J. &
- 993 Wilby, P.R. 2006: Palaeoenvironmental interpretation of an ice-contact glacial lake succession:
- 994 an example from the late Devensian of southwest Wales, UK. *Quaternary Science Reviews 25*,
 - *995* 739-762.
 - 996 Evans, C.D.R. 1990: The geology of the western English Channel and its western approaches. U.K.
- 997 *Offshore Regional Report*. British Geological Survey. HMSO, London.

Boreas

2 3	998	Evans, D.J.A. & Ó Cofaigh, C. 2003: Depositional evidence for marginal oscillations of the Irish Sea ice
4 5	999	stream in southeast Ireland during the last glaciation. Boreas 32, 76-101.
6 7 0	1000	Eyles, N. & McCabe, A.M. 1989:The Late Devensian (<22,000 BP) Irish Sea Basin: the sedimentary
9 10	1001	record of a collapsed ice sheet margin. Quaternary Science Reviews 8, 307-351.
11 12	1002	Eyles, N. & McCabe, A.M. 1991: Glaciomarine deposits of the Irish Sea Basin: the role of glacio-
13 14	1003	isostatic disequilibrium. In Ehlers, J., Gibbard, P.L. & Rose, J. (eds.): Glacial Deposits in Great
15 16	1004	Britain and Ireland. A.A. Balkema, Rotterdam, 311-331.
17 18 19	1005	Eyles, N., Eyles, C. H. & Maill, A. D. 1983: Lithofacies types and vertical profile models; an alternative
20 21	1006	approach to the description and environmental interpretation of glacial diamict and diamictite
22 23	1007	sequences. Sedimentology 30, 393–410.
24 25	1008	Fletcher, C.J.N. & Siddle, H.J. 1998: Development of glacial Llyn Teifi, west Wales: evidence for lake-
26 27	1009	level fluctuations at the margins of the Irish Sea ice sheet. Journal of the Geological Society of
28 29 20	1010	London 155, 389–399.
30 31 32	1011	Freeman-Lynde, R.P., Hutchinson, D.R., Folger, D.W., Wiley, B.H. & Hewett, M.J. 1980: The Origin
33 34	1012	and Distribution of Subbottom Sediments in Southern Lake Champlain. Quaternary Research 14,
35 36	1013	224-239.
37 38	1014	Fürsich, F.T. & Aberhan, M. 1990: Significance of time-averaging for palaeocommunity analysis.
39 40	1015	Lethaia 23, 143-152.
41 42 43	1016	Gallager, S.M., Davis, C.S., Epstein, A.W., Solow, A. & Beardsley, R.C. 1996: High resolution
44 45	1017	observations of plankton spatial distributions correlated with hydrography in the Great
46 47	1018	Southern Channel, Georges Bank. Deep Sea Research 43, 1627-1663.
48 49	1019	Gilbert, R., Nielsen, N., Desloges, J.R., Rasch, M., 1998: Contrasting glacimarine sedimentary
50 51	1020	environments of two arctic fiords on Disko, West Greenland. Marine Geology 147, 63-83.
52 53 54	1021	Gilbert, R., Nielsen, N., Möller, H., Desloges, J.R. & Rasch, M. 2002: Glacimarine sedimentation in
55 56	1022	Kangerdluk (Disko Fjord), West Greenland, in response to a surging glacier. Marine Geology 191,
57 58 59	1023	1-18.

3 4	1024	Gleed-Owen, C. 1997: The Devensian Late-glacial arrival of natterjack toad, Bufo calamita, in Britain
- 5 6	1025	and its implications for colonisation routes and land-bridges. Quaternary Newsletter 81, 18-24.
7 8	1026	Gordillo, S., & Aitken, A.E. 2001: Postglacial succession of Late Quaternary macrofaunal assemblages
9 10	1027	from the central Canadian Arctic Archipelago. <i>Boreas 30</i> , 61–72.
11 12	1028	Gowen, R.J., Raine, R., Dickey-Collas, M. & White, M. 1998: Plankton distributions in relation to
13 14 15	1029	physical oceanographic features on the southern Malin Shelf, August 1996. ICES Journal of
15 16 17	1030	Marine Science 55, 1095-1111.
18 19	1031	Graham, A. 1988: Molluscs: Prosobranch and Pyramidellid Gastropods. Linnean Society Synopses of
20 21	1032	the British Fauna (ns), 2 (2nd ed.), 1-662.
22 23	1033	Hambrey, M.J., Davies, J.R., Glasser, N.F., Waters, R.A., Dowdeswell, J.A., Wilby, P.R., Wilson, D. &
24 25	1034	Etienne, J.L. 2001: Devensian glacigenic sedimentation and landscape evolution in the Cardigan
26 27	1035	area of southwest Wales. Journal of Quaternary Science 16, 455-482.
28 29 20	1036	Harland, R. 1983: Distribution maps of recent Dinoflagellate cysts in bottom sediments from the
30 31 32	1037	North Atlantic Ocean and adjacent seas. Paleontology 26, 321-387.
33 34	1038	Harland, R. 1994: Dinoflagellate cysts from the glacial/postglacial transition in the northeast Atlantic
35 36	1039	Ocean. Palaeontology 37, 263-283.
37 38	1040	Haynes, J.R., McCabe, A.M. & Eyles, N. 1995: Microfaunas from Late Devensian Glaciomarine
39 40	1041	Deposits in the Irish Sea Basin. Irish Journal of Earth Sciences 14, 81-103.
41 42	1042	Hayward, P.J. & Ryland, J.S. (eds.) 1998: Handbook of the Marine Fauna of North-West Europe.
43 44 45	1043	Oxford University Press, Oxford.
46 47	1044	Head, M.J., Seidenkrantz, MS., Janczyk-Kopikowa, Z., Marks, L. & Gibbard, P.L. 2005: Last
48 49	1045	Interglacial (Eemian) hydrographic conditions in the southeastern Baltic Sea, NE Europe, based
50 51	1046	on dinoflagellate cysts. Quaternary International 130, 3–30.
52 53	1047	Heyworth, A. & Kidson, C. 1982: Sea-level changes in southwest England and Wales. Proceedings of
54 55 56 57 58 59	1048	the Geologists' Association 93, 91-111.

Boreas

3	1049	Hiemstra, J.F., Evans, D.J.A., Scourse, J.D., McCarroll, D., Furze, M.F.A. & Rhodes, E. 2006: New
4 5 6	1050	evidence for a grounded Irish Sea glaciation of the Isles of Scilly, UK. Quaternary Science
7 8	1051	Reviews 25, 299-309.
9 10	1052	Jaeger, J.M., Nittrouer, C.A., 1999: Marine record of surge-induced outburst floods from the Bering
11 12	1053	Glacier, Alaska. Geology 27, 847-850.
13 14	1054	Jeffrey, D. 1990: Comment by D. Jeffery. In "Glacial incisions indicating Middle and Upper
15 16	1055	Pleistocene ice limits off Britain" - two comments and a reply. <i>Terra Nova 2</i> , 383-385.
17 18 19	1056	Kelley, J.T., Cooper, J.A.G., Jackson, D.W.T., Belknap, D.F. & Quinn, R.J. 2006: Sea-level change and
20 21	1057	inner shelf stratigraphy off Northern Ireland. Marine Geology 232, 1-15.
22 23	1058	Kerr, D.E. 1987: Depositional environments during a glaciolacustrine to marine transition in the
24 25	1059	Richardson and Rae River basin, N.W.T. Canadian Journal of Earth Sciences 24, 2130-2140.
26 27	1060	Kidwell, S.M. 1998: Time-averaging in the marine fossil record: overview of strategies and
28 29	1061	uncertainties. GEOBIOS 30, 977-995.
30 31 32	1062	Kidwell, S.M. 2002: Time-averaged molluscan death assemblages: Palimpsests of richness, snapshots
33 34	1063	of abundance. <i>Geology 30</i> ; 803–806.
35 36	1064	Korsun, S. & Hald, M. 1998: Modern Benthic Foraminifera off Novaya Zemlya Tidewater Glaciers,
37 38	1065	Russian Arctic. Arctic and Alpine Research 30, 61-77.
39 40	1066	Kowalewski, M. Goodfriend, G.A. & Flessa, K.W. 1998: High-resolution estimates of temporal mixing
41 42	1067	within shell beds: the evils and virtues of time-averaging. Paleobiology 24, 387-304.
43 44 45	1068	Krammer, K. & Lange-Bertalot, H. 1991: Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae,
45 46 47	1069	Eunotiaceae. In Ettl, H., Gerlof, J., Heynig, H. & Mollenhauer, D. (eds.): Süßwasserflora von
48 49	1070	Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, Germany.
50 51	1071	Krammer, K. & Lange-Bertalot, H. 1997: Bacillariophyceae. 1. Teil: Naviculaceae. In Ettl, H., Gerlof, J.,
52 53	1072	Heynig, H. & Mollenhauer, D. (eds.): Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer
54 55	1073	Verlag, Stuttgart, Germany.
56 57 58	1074	Lambeck, K. 1991: Glacial rebound and sea-level change in the British Isles. <i>Terra Nova 3</i> , 379-389.
59 60		43

1075 Lambeck, K. 1993: Glacial Rebound of the British Isles. II; A high resolution, high-precision model.

- 1076 Geophysics Journal International 115, 960-990.
- 1077 Lambeck, K. 1995: Late Devensian and Holocene shorelines of the British Isles and North Sea from
- 1078 models of glacio-hydro-isostatic rebound. Journal of the *Geological Society of London 152*, 437-
- 1079 448.
 - 1080 Lambeck, K. 1996: Glaciation and sea-level change for Ireland and the Irish Sea since Late
 - 1081 Devensian/Midlandian time. *Journal of the Geological Society of London 153*, 853-872.
 - 1082 Lambeck, K. & Purcell, A.P. 2001: Sea levels in the Irish Sea since the Last Glacial Maximum: results
 - 1083 from isostatic modelling. *Journal of Quaternary Science 16*, 497-506.
- 1084 Lambert, J.T. & Khawaja, Z.M. 1978: Geotechnical analysis of till like material from the SW
- 1085 Approaches. Institute of Geological Sciences Engineering Geology Unit Internal Report No.
 - *78/23*, 1-6.
- Lericolais, G., Auffret, J.-P. & Bourillet, J.-F. 2003: The Quaternary Channel River: seismic stratigraphy
 of its palaeo-valleys and deeps. *Journal of Quaternary Science 18*, 245–260.
- 1089 Lynch, J.M. 1996: Postglacial colonization of Ireland by mustelids, with particular reference to the
- 1090 badger (*Meles meles* L.). *Journal of Biogeography* 23, 179-185.
- 1091 MacLean, B., Sonnichsen, G., Vilks, G., Powell, C., Moran, K., Jennings, A., Hodgson, D. & Deonarine,
- 1092 B. 1989: Marine geological and geotechnical investigations in Wellington, Byam Martin, Austin,
- and adjacent channels, Canadian Arctic Archipelago. *Geological Survey of Canada, Paper 89–11*,
 1094 1–69.
 - 1095 Marret, F. & Scourse, J.D. 2002: Control of modern dinoflagellate cyst distribution in the Irish and
 - 1096 Celtic seas by seasonal stratification dynamics. *Marine Micropaleontology* 47, 101-116.
 - Marret, F. & Zonneveld, K.A.F. 2003: Atlas of modern organic-walled dinoflagellate cyst distribution.
 Review of Paleobotany and Palynology 125, 1-200.
 - 1099 Marret, F., Scourse, J.D., Austin, W.E.N. 2004: Holocene shelf-sea seasonal stratification dynamics: a
 - 1100 dinoflagellate cyst record from the Celtic Sea, NW European shelf. *The Holocene* 14, 689-696.

Boreas

2		
3 4	1101	Marsset, T., Tessier, B., Reynaud, JY., De Batist, M. & Plagnol, C. 1999: The Celtic Sea banks: an
5 6	1102	example of sand body analysis from very high-resolution seismic data. Marine Geology 158, 89-
7 8	1103	109.
9 10	1104	Mascheretti, S., Rogatcheva, M.B., Gündüz, İ., Fredga, K. & Searle, J.B. 2003: How did the pygmy
11 12	1105	shrews colonize Ireland? Clues from a phylogenetic analysis of mitochondrial cytochrome b
13 14	1106	sequences. Proceedings of the Royal Society of London B 270, 1593-1599.
15 16 17	1107	Massey, A.C., Gehrels, W.R., Charman, D.J., Milne, G.A., Peltier, W.R., Lambeck, K. & Selby, K.A. 2008:
17 18 19	1108	Relative sea-level change and postglacial isostatic adjustment along the coast of south Devon,
20 21	1109	United Kingdom. Journal of Quaternary Science 23, 415–433.
22 23	1110	Matthiessen, J., de Vernal, A., Head, M., Okolodkov, Y., Zonneveld, K. & Harland, R. 2005: Modern
24 25	1111	organic-walled dinoflagellate cysts in Arctic marine environments and their
26 27	1112	(paleo)environmental significance. Paläontologische Zeitschrift 79, 3–51.
28 29	1113	McCabe, A.M. 2008: Comment: Postglacial relative sea-level observations from Ireland and their role
30 31 32	1114	in glacial rebound modelling. Journal of Quaternary Science 23, 817-820.
33 34	1115	McCabe, A.M. & Ó Cofaigh, C. 1995: Late Pleistocene morainal bank facies at Greystones, eastern
35 36	1116	Ireland: an example of sedimentation during ice marginal re-equilibration in an isostatically
37 38	1117	depressed basin. Sedimentology 42, 647-663.
39 40	1118	McCabe, A.M., Knight, J. & McCarron, S. 1998: Evidence for Heinrich event 1 in the British Isles.
41 42	1119	Journal of Quaternary Science 13, 549-568.
43 44 45	1120	McCabe, A.M., Clark, P.U. & Clark, J. 2005: AMS ¹⁴ C of deglacial events in the Irish Sea Basin and
46 47	1121	other sectors of the British-Irish ice sheet. Quaternary Science Reviews 24, 1673-1690.
48 49	1122	McCarroll, D. 2001: Deglaciation of the Irish Sea Basin: a critique of the glaciomarine hypothesis.
50 51	1123	Journal of Quaternary Science 16, 393-404.
52 53	1124	McCarroll, D., Stone, J.O., Ballantyne, C.K., Scourse, J.D., Fifield, L.K., Evans, D.J.A. & Hiemstra, J.F.
54 55	1125	2010: Exposure-age constraints on the extent, timing and rate of retreat of the last Irish Sea ice
50 57 58	1126	stream. Quaternary Science Reviews 29, 1844-1852.
59 60		45

3 4	1127	McCarthy, F.M.G., Gostlin, K.E., Mudie, P.J. & Hopkins, J.A. 2003: Terrestrial and marine
5	1128	palynomorphs as sea-level proxies: an example from Quaternary sediments on the New Jersey
7 8	1129	margin, U.S.A. In Olson, H.C. & Leckie, R.M. (eds.): Micropaleontologic Proxies for Sea-Level
9 10	1130	Change and Stratigraphic Discontinuities. SEPM (Society for Sedimentary Geology) Special
11 12	1131	Publication No. 75, 119-129.
13 14	1132	Mudie, P.J. 1992: Circum-Arctic Quaternary and Neogene marine palynofloras: paleoecology and
15 16 17	1133	statistical analysis. In Head, M.J. & Wrenn, J.H. (eds.): Neogene and Quaternary Dinoflagellate
17 18 19	1134	Cysts and Acritarchs. American Association of Stratigraphic Palynologists: Foundation: Dallas,
20 21	1135	тх; 347–390.
22 23	1136	Mudie, P.J., Rochon, A., Prins, M. A., Soenarjo, D., Troelstra, S.R., Levac, E., Scott, D. B., Roncaglia, L.
24 25	1137	& Kuijpers, A. 2006: Late Pleistocene–Holocene marine geology of Nares Strait region:
26 27	1138	palaeoceanography from foraminifera and \dinoflagellate cysts, sedimentology and stable
28 29	1139	isotopes. Polarforschung 74, 169-183.
30 31 32	1140	Murdmaa, I., Ivanova, E., Duplessy, JC., Levitan, M., Khusid, T., Bourtman, M., Alekhina, G.,
33 34	1141	Alekseeva, T., Belousov, M. & Serova, V. 2006: Facies system of the Eastern Barents Sea since
35 36	1142	the last glaciation to present. Marine Geology 230, 275–303.
37 38	1143	Neill, S.P., Scourse, J.D., Bigg, G.R. & Uehara, K. 2009: Changes in wave climate over the northwest
39 40	1144	European shelf seas during the last 12,000 years. Journal of Geophysical Research 114, C06015,
41 42 42	1145	doi:10.1029/2009JC005288.
43 44 45	1146	Ó Cofaigh, C. & Dowdeswell, J.A. 2001: Laminated sediments in glacimarine environments:
46 47	1147	diagnostic criteria for their interpretation. Quaternary Science Reviews 20, 1411-1436.
48 49	1148	Ó Cofaigh, C. & Evans, D.J.A. 2001a: Sedimentary evidence for deforming bed conditions associated
50 51	1149	with a grounded Irish Sea glacier, southern Ireland. Journal of Quaternary Science 16, 435-454.
52 53	1150	Ó Cofaigh, C. & Evans, D.J.A. 2001b: Deforming bed conditions associated with a major ice stream of
54 55	1151	the last British ice sheet. <i>Geology 29,</i> 795-798.
50 57 58		

1			
2 3 4	1152	Ó Cofaigh, C. & Evans, D.J.A. 2007: Radiocarbon constraints on the age of the maximum advance	of
5	1153	the British–Irish Ice Sheet in the Celtic Sea. Quaternary Science Reviews 26, 1197–1203.	
7 8	1154	Pantin, H.M. 1977: Quaternary sediments from the northern Irish Sea. In Kidson, C. & Tooley, M.J.	
9 10	1155	(eds.): The Quaternary History of the Irish Sea., Geological Journal., Special Issue, 7.	
11 12	1156	Pantin, H.M. 1978: Quaternary sediments from the north-east Irish Sea, Isle of Man to Cumbria.	
13 14	1157	Bulletin of the Geological Survey of Great Britain 64.	
15 16	1158	Pantin, H.M. & Evans, C.D.R. 1984: The Quaternary history of the Central and Southern Celtic Sea.	
17 18 19	1159	Marine Geology 57, 259-293.	
20 21	1160	Peacock, J.D.,1993: Late Quaternary marine Mollusca as palaeoenvironmental proxies: a	
22 23	1161	complication and assessment of basic numerical data for NE Atlantic species found in shallow	v
24 25	1162	water. Quaternary Science Reviews 12, 263-275.	
26 27	1163	Peltier, W.R., Shennan, I., Drummond, R. & Horton, B. 2002: On the postglacial isostatic adjustme	nt
28 29	1164	of the British Isles and the shallow viscoelastic structure of the Earth. Geophysical Journal	
30 31 32	1165	International 148, 443-475.	
33 34	1166	Pieńkowski, A.J., England, J.H., Furze, M.F.A., Marret, F., Eynaud, F., Vilks, G., MacLean, B., Blasco,	, S.
35 36	1167	& Scourse, J.D. 2012: The deglacial to postglacial environments of southeastern Barrow Strai	t,
37 38	1168	Canadian Arctic Archipelago. <i>Boreas 41</i> , 141-179.	
39 40	1169	Pieńkowski, J.A., England, J.H. Furze, M.F.A., Blasco, S., Mudie, P.J. & MacLean, B. Submitted. 11,0)00
41 42	1170	years of environmental change in the Northwest Passage: a multiproxy core record from cen	tral
43 44 45	1171	Parry Channel, Canadian High Arctic. Marine Geology.	
46 47	1172	Pospelova, V., Chmura, G.L. & Walker, H.A. 2004: Environmental factors influencing the spatial	
48 49	1173	distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England	
50 51	1174	(USA). Review of Palaeobotany and Palynology 128, 7-34.	
52 53	1175	Pospelova, V., Chmura, G.L., Boothman, W.S. & Latimer, J.S. 2005: Spatial distribution of modern	
54 55	1176	dinoflagellate cysts in polluted estuarine sediments from Buzzards Bay (Massachusetts, USA))
50 57 58	1177	embayments. Marine Ecology Progress Series 292, 23–40.	
59 60			47

~		
2 3	1178	Post, A.L., Hemer, M.A., O'Brien, P.E., Roberts, D., Craven, M., 2007: History of benthic colonisation
4 5	1179	beneath the Amery Ice Shelf, East Antarctica. Marine Ecology Progress Series 344, 29-37.
6 7	1180	Powell, R.D. 1984: Glacimarine processes and inductive lithofacies modelling of ice shelf and
o 9 10	1181	tidewater glacier sediments based on Quaternary examples. <i>Marine Geology 57</i> , 1–52.
11		
12 13	1182	Praeg, D., McCarron S. & Stoker, M. 2011: New evidence on glaciation of the Celtic Sea: results from
14 15	1183	GLAMAR. XVIII INQUA Congress Bern, Switzerland Abstract, 2490.
16 17	1184	Preece, R.C., Coxon, P. & Robinson, J.E. 1986: New biostratigraphic evidence of the Post-glacial
18 19	1185	colonization of Ireland and for Mesolithic forest disturbance. Journal of Biogeogeography 13,
20 21	1186	497-509.
22 23	1187	Reid, P.C. 1975: A regional sub-division of dinoflagellate cysts around the British Isles. New
24 25	1188	Phytologist 75, 589-603.
26 27	1189	Reimer, P.J., McCormac, F.G, Moore, J., McCormick, F. & Murray, E.V. 2002: Marine radiocarbon
28 29	1190	reservoir corrections for the mid- to late Holocene in the eastern subpolar North Atlantic. The
30 31 32	1191	Holocene 12, 129–135.
33 34	1192	Reimer P.J., Baillie, M.G.L., Bard, E. et al. 2009: IntCal09 and Marine09 radiocarbon age calibration
35 36	1193	curves, 0–50,000 years cal BP. <i>Radiocarbon 51</i> , 1111–1150.
37 38	1194	Reynaud, JY., Tessier, B., Proust, JN., Lericolais, G., Marsset, T., Berné, S. & Chamley, H. 1985:
39 40	1195	Apports de la sismique très haute résolution à l'interprétation génétique d'un banc sableux de
41 42	1196	la Mer Celtique. Comptes Rendus Academie de Science Paris 320 (IIa), 125-132.
43 44 45	1197	Reynaud, JY., Tessier, B., Proust, JN., Dalrymple, R., Marsset, T., De Batist, M., Bourillet, JF. &
43 46 47	1198	Lericolais, G., 1999: Eustatic and hydrodynamic controls on the architecture of a deep shelf sand
48 49	1199	bank (Celtic Sea). Sedimentology 46, 703-721.
50 51	1200	Reynaud, JY., Tessier, B., Auffret, JP., Berné, S., Batist, M. D., Marsset, T. and Walker, P. 2003: The
52 53	1201	offshore Quaternary sediment bodies of the English Channel and its Western Approaches.
54 55	1202	Journal of Quaternary Science 18, 361–371.
56		
57		
58 59		

59 60

1

48

Boreas

2 3	1203	Riding J.B. 1997: A Palynological Investigation of Sediments from Cardigan No 1 and No 2 Boreholes	5.
4 5 6	1204	Technical ReportWH/97/214R, British Geological Survey: Keyworth.	
0 7 8	1205	Rijsdijk K.F., Warren W.P & Van der Meer J.J.M. 2010: The deglacial sequence at Killiney, SE Ireland	:
9 10	1206	terrestrial sedimentation and glaciotectonics. Quaternary Science Reviews. 29, 696–719.	
11 12	1207	Rippeth, T.P., Scourse, J.D., Uehara, K. & McKeown, S. 2008: Impact of sea-level rise over the last	
13 14	1208	deglacial transition on the strength of the continental shelf CO_2 pump. Geophysical Research	
15 16 17	1209	Letters 35, L24604, doi:10.1029/2008GL035880	
18 19	1210	Roberts, D.H., Dackombe, R.V. & Thomas, G.S.P. 2007: Palaeo-ice streaming in the central sector of	
20 21	1211	the BritishIrish Ice Sheet during the Last Glacial Maximum: evidence from the northern Irish Se	a
22 23	1212	Basin. <i>Boreas 36</i> , 115-129.	
24 25	1213	Roberts, M.J., Scourse, J.D., Bennell, J.D., Huws, D.G., Jago, C.F. & Long, B.T. 2011: Late Devensian	
26 27 28	1214	and Holocene relative sea-level change in North Wales, UK. Journal of Quaternary Science 26,	
20 29 30	1215	141–155.	
31 32	1216	Rochon, A., de Vernal, A., Turon, JL., Matthiessen, J. & Head M. 1999: Distribution of Recent	
33 34	1217	dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in	
35 36	1218	relation to sea-surface parameters. American Association of Stratigraphic Paleontologists	
37 38	1219	Contributions Series 35, 1-150.	
39 40	1220	Scourse, J.D. 1991a: Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly.	
41 42 43	1221	Philosophical Transactions of the Royal Society of London B334, 405-448.	
44 45	1222	Scourse, J.D. 1991b: Glacial deposits of the Isles of Scilly. In Ehlers, J., Gibbard, P.L. & Rose, J. (eds.):	
46 47	1223	Glacial Deposits in Great Britain and Ireland. A.A. Balkema, Rotterdam. 291-300.	
48 49	1224	Scourse, J.D. In press. Quaternary sea level and palaeotidal changes: a review of impacts on, and	
50 51	1225	responses of, the marine biosphere. Oceanography and Marine Biology: An Annual Review.	
52 53	1226	Scourse, J.D. & Austin, W.E.N. 1994: A Devensian Late-glacial and Holocene sea-level and water	
54 55 56	1227	depth record from the central Celtic Sea. Quaternary Newsletter 74, 22-29.	
57 58			
59 60		2	1 9

1228 Scourse, J.D. & Furze, M.F.A. 2001: A critical review of the glacimarine model for Irish Sea

1229 deglaciation: evidence from southern Britain, the Celtic shelf and adjacent continental slope.

1230 Journal of Quaternary Science 16, 419-434.

- 1231 Scourse, J.D., Austin, W.E.N., Bateman, R.M., Catt, J.A., Evans, C.D.R., Robinson, J.E. & Young, J.R.
- 1232 1990: Sedimentology and micropaleontology of glacimarine sediments from the Central and
- 1233 Southwestern Celtic Sea. *In* Dowdeswell, J.A. & Scourse, J.D. (eds.): Glacimarine environments:
- 1234 processes and sediments. *Geological Society Special Publication 53*, 369-387.
- 1235 Scourse, J.D., Robinson, J.E. & Evans, C.D.R. 1991: Glaciation of the central and southwestern Celtic
- Sea. *In* Ehlers, J., Gibbard, P.L. & Rose, J. (eds.): *Glacial Deposits in Great Britain and Ireland*. A.A.
 Balkema, Rotterdam. 301-310.
- 1238 Scourse, J.D., Austin, W.E.N., Long, B.T., Assinder, D.J. & Huws, D. 2002: Holocene evolution of
- seasonal stratification in the Celtic Sea: refined age model, mixing depths and foraminiferal
 stratigraphy. *Marine Geology 191*, 119-145.
- 1241 Scourse, J.D., Uehara, K., & Wainwright, A. 2009: Celtic Sea linear tidal sand ridges, the Irish Sea Ice
- 1242 Stream and the Fleuve Manche: palaeotidal modelling of a transitional passive margin
- depositional system. *Marine Geology 259*, 102–111.
- 1244 Sejrup, H.P., Hjelstuen, B.O., Dahlgren, K.I.T., Haflidason, H., Kuijpers, A., Nygård, A., Praeg, D.,
- 1245 Stoker, M.S. & Vorren, T.O. 2005: Pleistocene glacial history of the NW European continental
 - 1246 margin. *Marine and Petroleum Geology 22*, 1111-1129.
 - 1247 Seyd, E.L. 1992: Moss mites (Acari: Oribatida) in a lichen sample from Mount Leinster, Co. Carlow,
- 1248 Eire, and their bearing on a land connection between Britain and Ireland during the Quaternary
 - and Post-glacial times. *Journal of Biogeography 19*, 401-409.
 - 1250 Shennan, I., Bradley, S., Milne, G., Brooks, A., Bassett, S. and Hamilton, S. 2006: Relative sea-level
- 1251 changes, glacial isostatic modelling and ice-sheet reconstructions from the British Isles since the
 - 1252 Last Glacial Maximum. *Journal of Quaternary Science* 21, 585–599.

1			
2 3 4	1253	Stewart, J.R. & Lister, A.M. 2001: Cryptic northern refugia and the origins of the modern biota.	
5 6	1254	Trends in Ecology & Evolution 16, 608-613.	
7 8	1255	Stuart, A.J. 1977: The vertebrates of the Last Cold Stage in Britain and Ireland. Philosophical	
9 10	1256	Transactions of the Royal Society of London B280, 295-312.	
11 12	1257	Stuart, A.J. 1995: Insularity and Quaternary vertebrate faunas in Britain and Ireland. In Preece, R.C.	
13 14	1258	(ed.): Island Britain: a Quaternary perspective. Geological Society Special Publication 96, 111-	
15 16 17	1259	125.	
18 19	1260	Stuart, A.J. & van Wijngaarden-Bakker, L.H. 1985: Chapter 10:- Quaternary Vertebrates. In Edwards,	,
20 21	1261	K.J. & Warren, W.P. (eds.): The Quaternary History of Ireland. Academic Press, London, 221-249	Э.
22 23	1262	Stuiver, M., Reimer, P.J., Reimer, R.W., 2010: CALIB 6.0 [WWW programme and documentation].	
24 25	1263	Syvitski, J.P.M. 1991: Towards an understanding of sediment deposition on glaciated continental	
26 27	1264	shelves. Continental Shelf Research 11, 897–937.	
28 29 20	1265	Tappin, D.R., Chadwick, R.A., Jackson, A.A., Wingfield, R.T.R. & Smith, N.J.P. 1994: The geology of	
30 31 32	1266	Cardigan Bay and the Bristol Channel. British Geological Survey U.K. Offshore Regional Report.	
33 34	1267	HMSO, London.	
35 36	1268	Teacher, A.G.F., Garner, T.W.J. & Nichols, R.A. 2009: European phylogeography of the common frog	
37 38	1269	(Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an	
39 40	1270	Irish glacial refugium. <i>Heredity 102</i> , 490–496.	
41 42 42	1271	Tebble, N. 1976: British Bivalve Seashells: a handbook for identification (2 nd edition). HMSO,	
43 44 45	1272	Edinburgh.	
46 47	1273	Tesch, J.J. 1947: Pteropoda Thecosomata. Conseil international pour L'exploration de la Mer,	
48 49	1274	Zooplanton, Sheet 8.	
50 51	1275	Thomas, G.S.P., Chiverrell, R.C. & Huddart, D. 2004: Ice-marginal depositional responses to	
52 53	1276	readvance episodes in the Late Devensian deglaciation of the Isle of Man. Quaternary Science	
54 55	1277	<i>Reviews 23</i> , 85-106.	
57 58			
59 60		5	51

2 3	1278	Thompson, T.E. & Brown, G.H. 1976: British Opisthobranch Molluscs. Linnean Society Synopses of the
4 5 6	1279	British Fauna (ns) 8, 1-203.
7 8	1280	Thomsen, E. & Vorren, T.O. 1986: Macrofaunal palaeoecology and stratigraphy in Late
9 10	1281	Quaternaryshelf sediments off northern Norway. Palaeogeography, Palaeoclimatology,
11 12	1282	Palaeoecology 56, 103-150.
13 14 15	1283	Uehara, K., Scourse, J.D., Horsburgh, K.J., Lambeck, K. & Purcell, A.P. 2006: Tidal evolution of the
16 17	1284	northwest European shelf seas from the Last Glacial Maximum to the present. <i>Journal of</i>
18 19	1285	Geophysical Research 111, C09025, doi:10.1029/2006JC003531.
20 21	1286	Van Landeghem, K.J.J., Wheeler, A.J. & Mitchell, N.C. 2009: Seafloor evidence for palaeo-ice
22 23	1287	streaming and calving of the grounded Irish Sea Ice Stream: Implications for the interpretation
24 25 26	1288	of its final deglaciation phase. <i>Boreas 38</i> , 119–131.
20 27 28	1289	Wingfield, R.T.R. 1989: Glacial incisions indicating Middle and Upper Pleistocene ice limits off Britain.
20 29 30	1290	Terra Nova 1, 538-548.
31 32	1291	Wingfield, R.T.R. 1990: The origin of major incisions within the Pleistocene deposits of the North Sea
33 34	1292	Marine Geology 91, 31-52.
35 36	1293	Wingfield, R.T.R. 1995: A model of sea-level in the Irish and Celtic Seas during the end-Pleistocene to
37 38	1294	Holocene transition. In Preece, R.C. (ed.): Island Britain: a Quaternary perspective. Geological
39 40 41	1295	Society Special Publication 96, 209-242.
41 42 43	1296	Wingfield, R.T.R. 1996: Erosional effects on morphological sea-level indicators. In Plag, HP., Austin,
44 45	1297	W.E.N., Belknap, D.F., Devoy, R.J.N., England, J.H., Josenhans, H., Peacock, J.D., Petersen, K.S.,
46 47	1298	Rokoengen, K., Scourse, J.D., Smith, D.E. & Wingfield, R.T.R.: Late Quaternary relative sea-level
48 49	1299	changes and the role of glaciation upon the continental shelves. Terra Nova 8, 215-216
50 51	1300	Wollast, R. 1991: The coastal organic carbon cycle: Fluxes, sources, and sinks, In Mantoura, R.F.C.,
52 53	1301	Martin, JM. & Wollast, R. (eds.): Ocean margin processes in global change: report of the
54 55 56	1302	Dahlem Workshop on Ocean Margin Processes in Global Change, Berlin, 1990, March 18-23.
50 57 58	1303	Wiley, Berlin
59 60		52

1

Boreas

3 ⊿	1304	Woodman, P., McCarthy, M. & Monaghan, N. 1997: The Irish Quaternary Fauna Project. Quaternary
5	1305	Science Reviews 16, 129-159.
7 8	1306	Yalden, D.W. 1982: When did the mammal fauna of the British Isles arrive? Mammal Review 12, 1-
9 10	1307	57.
11 12	1308	
13 14	1309	
15		
16 17		
18		
19		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 49		
50		
51		
ว∠ 53		
54		
55		
วง 57		
58		
59		-
60		5

2 3 4	1310	List of Figures and Tables
5 6	1311	Fig. 1 Map of study area and inset of northern and central Celtic Sea continental shelf showing
7 8	1312	bathymetry and core locations.
9 10	1313	
11 12	1314	Fig. 2 Stratigraphies of British Geological Survey vibrocores from the northern and central Celtic Sea
13 14	1315	used in this study. For core locations and details, refer to Fig. 1 and Table 1. Lithostratigraphic codes
15 16 17	1316	are modified from Eyles <i>et al.</i> (1983). Dm = matrix-supported diamicton; F = fines; Gm = matrix-
18 19	1317	supported gravel; S = sand; h = horizontal laminations; I = fine laminations; (I) = very faint fine
20 21	1318	laminations; m = massive; -s = shelly.
22 23	1319	
24 25	1320	Fig. 3 Absolute abundances of macrofossil groups in analyzed British Geological Survey vibrocores
26 27	1321	(Fig. 1) from the Celtic Sea. Core samples are grouped by regionally-extensive stratigraphic units I, II,
28 29	1322	and III present in the study area, including subunits.
30 31 32	1323	
33 34	1324	Fig. 4 Results of organic-walled microfossil analyses on the Celtic Sea samples. (A) Dinoflagellate
35 36	1325	cysts. (B) Other non-pollen palynomorphs and pollen and spores. Core samples are grouped by
37 38	1326	regionally-extensive stratigraphic units I, II, and III present in the study area, including subunits.
39 40	1327	
41 42	1328	Table 1 Details of British Geological Survey vibrocore examined in the present study, including core
43 44 45	1329	number, location, and core code used in the text.
45 46 47	1330	
48 49 50 51 52 53 54 55 56 57	1331	Table 2 Details of radiocarbon dates used in this study.
58 59		
60		54

Fig. 1 Map of study area and inset of northern and central Celtic Sea continental shelf showing bathymetry and core locations. 124x90mm (600 x 600 DPI)

Fig. 1 Map of study area and inset of northern and central Celtic Sea continental shelf showing bathymetry and core locations. 124x90mm (600 x 600 DPI)

Fig. 2 Stratigraphies of British Geological Survey vibrocores from the northern and central Celtic Sea used in this study. For core locations and details, refer to Fig. 1 and Table 1. Lithostratigraphic codes are modified from Eyles et al. (1983). Dm = matrix-supported diamicton; F = fines; Gm = matrix-supported gravel; S = sand; h = horizontal laminations; I = fine laminations; (I) = very faint fine laminations; m = massive; -s = shelly.

Fig. 2 Stratigraphies of British Geological Survey vibrocores from the northern and central Celtic Sea used in this study. For core locations and details, refer to Fig. 1 and Table 1. Lithostratigraphic codes are modified from Eyles et al. (1983). Dm = matrix-supported diamicton; F = fines; Gm = matrix-supported gravel; S = sand; h = horizontal laminations; I = fine laminations; (I) = very faint fine laminations; m = massive; -s = shelly.

Fig. 2 Stratigraphies of British Geological Survey vibrocores from the northern and central Celtic Sea used in this study. For core locations and details, refer to Fig. 1 and Table 1. Lithostratigraphic codes are modified from Eyles et al. (1983). Dm = matrix-supported diamicton; F = fines; Gm = matrix-supported gravel; S = sand; h = horizontal laminations; I = fine laminations; (I) = very faint fine laminations; m = massive; -s = shelly.

Fig. 2 Stratigraphies of British Geological Survey vibrocores from the northern and central Celtic Sea used in this study. For core locations and details, refer to Fig. 1 and Table 1. Lithostratigraphic codes are modified from Eyles et al. (1983). Dm = matrix-supported diamicton; F = fines; Gm = matrix-supported gravel; S = sand; h = horizontal laminations; l = fine laminations; (l) = very faint fine laminations; m = massive; -s = shelly.

Page 61 of 65

Boreas

Fig. 3 Absolute abundances of macrofossil groups in analyzed British Geological Survey vibrocores (Fig. 1) from the Celtic Sea. Core samples are grouped by regionally-extensive stratigraphic units I, II, and III present in the study area, including subunits. 222x292mm (600 x 600 DPI)

Fig. 4 Results of organic-walled microfossil analyses on the Celtic Sea samples. (A) Dinoflagellate cysts. (B) Other non-pollen palynomorphs and pollen and spores. Core samples are grouped by regionally-extensive stratigraphic units I, II, and III present in the study area, including subunits. 222x295mm (600 x 600 DPI)

Boreas

2 3	Core Code	BGS Core Number	Lat. N	Long. W	Water Depth (m)	Core Length (cm)	Research Vessel	Recovery Date
4	CD-1	VE 51/-06/187	51° 49.62'	05° 59.26'	97	267	MV Steelfish	8/12/1973
5	CD-2	VE 51/-06/196	51° 40.99'	05° 49.91'	105	296	MV Steelfish	8/13/1973
7	CD-3	VE 51/-06/197	51° 37.08'	05° 49.42'	100	374	MV Steelfish	8/13/1973
8	CD-4	VE 51/-07/125	51° 35.27'	06° 08.29'	118	578	MV Whitehorn	9/4/1982
9	CD-5	VE 51/-07/201	51° 28.12'	06° 12.25'	109	500	MV Whitehorn	9/8/1982
10	CD-6	VE 51/-07/200	51° 25.01'	06° 12.29'	105	561	MV Whitehorn	9/8/1982
11	CD-7	VE 51/-07/199	51° 21.25'	06° 12.23'	118	568	MV Whitehorn	9/8/1982
12	CD-8	VE 51/-07/198	51° 16.20'	06° 16.97'	120	200	MV Whitehorn	9/8/1982
13	CD-9	VE 51/-07/197	51° 14.30'	06° 07.89'	106	232	MV Whitehorn	9/8/1982
14	CS-1	VE 50/-07/141	50° 47.95'	06° 54.07'	106	446	MV Briarthorn	6/3/1974
15	CS-2	VE 49/-08/142	49° 58.12'	07° 57.55'	133	216	MV Emerald	6/18/1977
16	CS-3	VE 49/-09/044	49° 57.80'	08° 20.24'	127	523	MV Cape Shore	8/7/1978
20 21 22 23 24 25 26 27 28 29 30 31								
32								
33								
34 35								

1													
2 Core	BGS	Sample	Litho.			Laboratory			1	Median Prob. Age	Calibrated Ages H	s Ranges (cal yrs BP)	
3 Code	Core Number	Depth (cm)	Unit	Material	Description	Number	$\delta^{13}C$	¹⁴ C Age	e ± (cal yrs BP)		68.2% interval	95.4% interval	
4 CD-1	VE 51/-06/187	010-015	Ι	Bivalve	Mimachlamys varia	AA-36237	1.60	3045	50	2870	2980 - 2740	3180 - 2660	
5		025-030	II	Gastropod	Hydrobia ulvae *	OS-79779	2.16	4630	25	4910	5040 - 4780	5220 - 4640	
6		025-030	II	Bivalve	Mimachlamys varia	AA-36238	2.70	4100	50	4200	4360 - 4060	4480 - 3900	
7		060-065	II	Bivalve	Spisula elliptica	AA-36239	1.60	10 445	75	11 620	11860 - 11360	12 050 - 11 230	
8		098-103	II	Bivalve	Spisula elliptica	AA-36240	1.60	9390	95	10 280	10 450 - 10 150	10 550 - 9910	
9		1 (0 1 (5		D: 1	m 1		0.60						
10 ^{CD-2}	VE 51/-06/196	160-165	11	Bivalve	Timoclea ovata	AA-36185	0.60	7450	55	7950	8060 - 7820	8170 - 7710	
11		160-165	11	Bivalve	Nucula sulcata '	AA-36186	1.50	7810	60	8300	8400 - 8180	8530 - 8060	
12CD-3	VE 51/-06/197	050-055	II	Gastropod	Tornus subcarinatus *	OS-79219	1.39	8630	60	9320	9460 - 9200	9520 - 9030	
13		050-055	II	Bivalve	Venus casina	AA-36241	0.90	9430	70	10 320	10 450 - 10 200	10 570 - 10 050	
14		063-068	II a	Bivalve	Ostrea edulis	AA-36242	1.90	9925	90	10 900	11 100 - 10 740	11 170 - 10 580	
15		075-080	II	Bivalve	Aequipecten opercularis	AA-36243	1.00	9140	70	9950	10 140 - 9800	10220 - 9590	
16		200-205	II	Bivalve	Spisula elliptica	AA-36244	1.40	8605	65	9290	9430 - 9160	9500 - 9010	
17		220-225	II a	Bivalve	Abra cf. alba , left valve	OS-79103	-0.23	9110	40	9910	10 100 - 9770	10 180 - 9600	
18		245-250	II a	Bivalve	Spisula elliptica	AA-36245	1.40	10 445	85	11 630	11 860 - 11 360	12 070 - 11 220	
19CD-4	VE 51/-07/125	070-075	П	Gastropod	Crisilla semistriata *	05-79220	2.15	9390	70	10 280	10420 - 10160	10 540 - 9960	
20	,,	070-075	II	Gastropod	Turritella communis	AA-32278	3.20	6345	60	6860	6990 - 6710	7150 - 6610	
21		090-095	II	Bivalve	Nucula turgida †	AA-32279	1.60	10 460	80	11650	11 880 - 11 390	12 080 - 11 230	
22 cp r	VE F1 / 07 /201	022 027	Ţ	Discoluto	Numla sulanta †	A A 22202	1 10	0005	05	10 770			
23	VE 51/-0//201	032-037	I II	Bivalve	Nucula suicata Turritalla communic	AA-32282	1.10	9805	85 65	10770	10930 - 10570 4470 - 4150	11120 - 10500	
24		030-033	11	Gastropou		AA-32203	2.90	4190	05	4310	4470 - 4130	4030 - 3700	
25		050-055		Gastropod	Turritella communis	AA-32284	3.10	3960	65 65	4010	4150 - 3840 6190 - 5020	4330 - 3690	
26		050-055		Bivalvo	Spisula alliptica	AA-32203	5.20 1.50	8055	00	9710	0100 - 5930 0870 - 0520	0290 - 5790 10110 - 9440	
20		050-055	11	Divalve	Nucula culoata [†]	AA 22207	1.30	10.220	00	11 490			
28		030-033	11	Divalve	Nuculu Sulculu	AA-32207	1.50	10 330	90	11400	11030 - 11220	11920 • 11130	
20 CD-6	VE 51/-07/200	080-085	II	Bivalve	Spisula elliptica	AA-32280	1.60	8940	65	9680	9820 - 9510	10 070 - 9440	
30		143-148	II	Bivalve	Nucula sulcata ⁺	AA-32281	1.40	10 305	75	11 430	11 630 - 11 200	11 870 - 11 140	
31 CD-8	VE 51/-07/198	110-115	II	Bivalve	Nucula sulcata †	AA-36248	1.60	11 935	80	13 420	13 570 - 13 280	13 720 - 13 190	
32		130-135	II b	Bivalve	Nucula sulcata †	AA-36249	1.70	11 895	80	13 380	13 500 - 13 240	13 670 - 13 140	
33		160-165	II b	Bivalve	Spisula elliptica	AA-36250	2.10	11 970	100	13 460	13600 - 13310	13 760 - 13 210	
34		190-195	II b	Gastropod	H. ulvae x1, R. parva x1 *	OS-79120	0.69	12 400	50	13 890	14 000 - 13 770	14 150 - 13 630	
35		190-195	II b	Gastropod	cf. Rissoa parva *	0S-79121	1.70	11 250	45	12 770	12 870 - 12 640	13 070 - 12 580	
36		190-195	II b	Gastropod	Hydrobia c.f. ulvae *	OS-79145	0.89	11 150	60	12 680	12 780 - 12 570	12 950 - 12 400	
37		190-195	II b	Bivalve	Spisula elliptica	AA-36251	2.00	12 410	85	13 900	14 030 - 13 760	14 210 - 13 490	
38 CD-9	VF 51/-07/197	190-195	I	Rivalve	S ellintca x1 T ovata v1	AA-36246	0.60	7945	65	8450	8570 - 8330	8730 - 8180	
39	1.51/-0//19/	10-195	I II	Divalve	Modiolus modiolus	AA 26247	0.00	12.250	120	12 040	14 020 - 12 440		
40		LLL-LL1	11	Divalve	moutotus moutotus	AA-30247	-0.20	12 350	120	13 040	14020 - 13000	14 170 - 13 430	
41 cs-1	VE 50/-07/141	021-026	II	Bivalve	Dosinia lupinus	AA-36187	1.20	5050	50	5440	5550 - 5320	5680 - 5140	
42		036-041	II	Gastropod	Tornus subcarinatus x2 *	OS-79139	1.48	8890	60	9620	9740 - 9470	9990 - 9370	
43		036-041	II	Gastropod	Rissoella diaphana *	OS-79147	0.84	12 250	80	13 720	13870 + 13520	13 980 - 13 430	
44		036-041	II	Bivalve	Corbula gibba	AA-36188	1.10	765	55	420	500 - 320	630 - 240	
45													

- 45 46 47 48
- 10

1													
² cs-2	VE 49/-08/142	167-172	II	Bivalve	Gari fervensis	AA-3227	4 2.90	7085	60	7600	7690	7490	7820 - 7410
3 4		195-200	II	Bivalve	Spisula elliptica	AA-3227	5 1.90	8785	80	9490	9640	9340	9850 - 9190
5 CS-3	VE 49/-09/044	165-170	Ι	Polychaete	Ditrupa arietina	AA-3227	6 2.00	5220	65	5620	5730	5480	5880 - 5340
6		193-198	II	Bivalve	Spisula elliptica	AA-3227	7 1.50	8420	70	9070	9260	8940	9390 - 8720

7 Dates calibrated using CALIB 6.0 (Stuiver et al. 2010) and MARINE09 calibration curve (Reimer et al. 2009). ΔR=-33±93 (Reimer et al. 2002)

8 AA dates = NERC - University of Arizona dates, year of assay 1998/99 OS dates = NOSAMS dates, year of assay 2010

9 Species marked by * are grazers (gastropods), species marked by [†] are deposit feeders (bivalves) and likley subject to enhanced radiocarbon age effects due to the ingestion

10 of "old" carbonate (England et al. 2012), all other molluscs and polychaete dates are on filter-feeding taxa.

11 Species names according to World Register of Marine Species (Appeltans *et al*. 2011) ine Species (Appertans et