1,174 research outputs found

    Observation of a possible superflare on Proxima Centauri

    Get PDF
    We report the observation on UT 2017 July 1 of an unusually powerful flare detected in near-infrared continuum photometry of Proxima Centauri. During a campaign monitoring the star for possible exoplanet transits, we identified an increase in Sloan i' flux leading to an observed peak at BJD 2457935.996 that was at least 10 per cent over pre-flare flux in this band. It was followed by a two-component rapid decline in the first 100 s that became a slower exponential decay with time constant of 1350 s. A smaller flare event 1300 s after the first added an incremental peak flux increase of 1 per cent of pre-flare flux. Since the onset of the flare was not fully time resolved at a cadence of 62 s, its actual peak value is unknown but greater than the time average over a single exposure of 20 s. The i' band is representative of broad optical and near-IR continuum flux over which the integrated energy of the flare is 100 times the stellar luminosity. This meets the criteria that established the concept of superflares on similar stars. The resulting implied ultraviolet flux and space weather could have had an extreme effect on the atmospheres of planets within the star's otherwise habitable zone

    Challenges in identifying cancer genes by analysis of exome sequencing data.

    Get PDF
    Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13-60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method). Cancer genes not detected by mutation recurrence also tend to be missed by all types of exome analysis. Nonetheless, these genes are implicated by other experiments such as functional genetic screens and expression profiling. These challenges are only partially addressed by increasing sample size and will likely hold even as greater numbers of tumours are analysed

    Dual-phase [18F]florbetapir in frontotemporal dementia.

    Get PDF
    PURPOSE: The PET tracer [18F]florbetapir is a specific fibrillar amyloid-beta (Aβ) biomarker. During the late scan phase (> 40 min), it provides pathological information about Aβ status. Early scan phase (0-10 min) can provide FDG-'like' information. The current investigation tested the feasibility of using florbetapir as a dual-phase biomarker in behavioural variant frontotemporal dementia (bvFTD). METHODS: Eight bvFTD patients underwent [18F]florbetapir and [18]FDG-PET scans. Additionally, ten healthy controls and ten AD patients underwent florbetapir-PET only. PET data were acquired dynamically for 60-min post-injection. The bvFTD PET data were used to define an optimal time window, representing blood flow-related pseudo-metabolism ('pseudo-FDG'), of florbetapir data that maximally correlated with the corresponding real FDG SUVR (40-60 min) in a composite neocortical FTD region. RESULTS: A 2 to 5-min time window post-injection of the florbetapir-PET data provided the largest correlation (Pearson's r = 0.79, p = 0.02) to the FDG data. The pseudo-FDG images demonstrated strong internal consistency with actual FDG data and were also visually consistent with the bvFTD patients' hypometabolic profiles. The ability to identify bvFTD from blind visual rating of pseudo-FDG images was consistent with previous reports using FDG data (sensitivity = 75%, specificity = 85%). CONCLUSIONS: This investigation demonstrates that early phase florbetapir uptake shows a reduction of frontal lobe perfusion in bvFTD, similar to metabolic findings with FDG. Thus, dynamic florbetapir scans can serve as a dual-phase biomarker in dementia patients to distinguish FTD from AD and cognitively normal elderly, removing the need for a separate FDG-PET scan in challenging dementia cases

    C/EBPβ-1 promotes transformation and chemoresistance in Ewing sarcoma cells.

    Get PDF
    CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPβ isoforms while re-expression of EWS-FLI1 rescued C/EBPβ expression. Overexpression of C/EBPβ-1, the largest of the three C/EBPβ isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPβ decreased colony formation, and re-expression of either C/EBPβ-1 or C/EBPβ-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPβ in Ewing sarcoma. Furthermore, increased expression of C/EBPβ led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPβ-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance

    Modeling 5 Years of Subglacial Lake Activity in the MacAyeal Ice Stream (Antarctica) Catchment Through Assimilation of ICESat Laser Altimetry

    Get PDF
    Subglacial lakes beneath Antarctica’s fast-moving ice streams are known to undergo ~1km3 volume changes on annual timescales. Focusing on the MacAyeal Ice Stream (MacIS) lake system, we create a simple model for the response of subglacial water distribution to lake discharge events through assimilation of lake volume changes estimated from Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry. We construct a steady-state water transport model in which known subglacial lakes are treated as either sinks or sources depending on the ICESat-derived filling or drainingrates. The modeled volume change rates of five large subglacial lakes in the downstream portion of MacIS are shown to be consistent with observed filling rates if the dynamics of all upstream lakes are considered. However, the variable filling rate of the northernmost lake suggests the presence of an undetected lake of similar size upstream. Overall, we show that, for this fast-flowing ice stream, most subglacial lakes receive \u3e90% of their water from distant distributed sources throughout the catchment, and we confirm that water is transported from regions of net basal melt to regions of net basal freezing. Our study provides a geophysically based means of validating subglacial water models in Antarctica and is a potential way to parameterize subglacial lake discharge events in large-scale ice-sheet models where adequate data are available

    Stochastic Model for Surface Erosion Via Ion-Sputtering: Dynamical Evolution from Ripple Morphology to Rough Morphology

    Get PDF
    Surfaces eroded by ion-sputtering are sometimes observed to develop morphologies which are either ripple (periodic), or rough (non-periodic). We introduce a discrete stochastic model that allows us to interpret these experimental observations within a unified framework. We find that a periodic ripple morphology characterizes the initial stages of the evolution, whereas the surface displays self-affine scaling in the later time regime. Further, we argue that the stochastic continuum equation describing the surface height is a noisy version of the Kuramoto-Sivashinsky equation.Comment: 4 pages, 7 postscript figs., Revtex, to appear in Phys. Rev. Let
    • …
    corecore