18 research outputs found
Quality of Life in Children Following Treatment for a Malignant Primary Bone Tumour Around the Knee
Purpose. We report on the quality of life following treatment for a malignant primary
bone tumour around the knee in skeletally immature children
Variation in forest root image annotation by experts, novices, and AI
Background: The manual study of root dynamics using images requires huge investments of time and resources and is prone to previously poorly quantified annotator bias. Artificial intelligence (AI) image-processing tools have been successful in overcoming limitations of manual annotation in homogeneous soils, but their efficiency and accuracy is yet to be widely tested on less homogenous, non-agricultural soil profiles, e.g., that of forests, from which data on root dynamics are key to understanding the carbon cycle. Here, we quantify variance in root length measured by human annotators with varying experience levels. We evaluate the application of a convolutional neural network (CNN) model, trained on a software accessible to researchers without a machine learning background, on a heterogeneous minirhizotron image dataset taken in a multispecies, mature, deciduous temperate forest. Results: Less experienced annotators consistently identified more root length than experienced annotators. Root length annotation also varied between experienced annotators. The CNN root length results were neither precise nor accurate, taking ~ 10% of the time but significantly overestimating root length compared to expert manual annotation (p = 0.01). The CNN net root length change results were closer to manual (p = 0.08) but there remained substantial variation. Conclusions: Manual root length annotation is contingent on the individual annotator. The only accessible CNN model cannot yet produce root data of sufficient accuracy and precision for ecological applications when applied to a complex, heterogeneous forest image dataset. A continuing evaluation and development of accessible CNNs for natural ecosystems is required
Variation in forest root image annotation between experts, novices and AI
Background: The manual study of root dynamics using images requires huge investments of time and resources and is prone to previously poorly quantified annotator bias. Artificial intelligence (AI) image-processing tools have been successful in overcoming limitations of manual annotation in homogeneous soils, but their efficiency and accuracy is yet to be widely tested on less homogenous, non-agricultural soil profiles, e.g., that of forests, from which data on root dynamics are key to understanding the carbon cycle. Here, we quantify variance in root length measured by human annotators with varying experience levels. We evaluate the application of a convolutional neural network (CNN) model, trained on a software accessible to researchers without a machine learning background, on a heterogeneous minirhizotron image dataset taken in a multispecies, mature, deciduous temperate forest.Results: Less experienced annotators consistently identified more root length than experienced annotators. Root length annotation also varied between experienced annotators. The CNN root length results were neither precise nor accurate, taking ~ 10% of the time but significantly overestimating root length compared to expert manual annotation (p = 0.01). The CNN net root length change results were closer to manual (p = 0.08) but there remained substantial variation.Conclusions: Manual root length annotation is contingent on the individual annotator. The only accessible CNN model cannot yet produce root data of sufficient accuracy and precision for ecological applications when applied to a complex, heterogeneous forest image dataset. A continuing evaluation and development of accessible CNNs for natural ecosystems is required
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy
Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations.
Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves.
Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p 90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score.
Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
Surgery school—who, what, when, and how: results of a national survey of multidisciplinary teams delivering group preoperative education
Background: group education is increasing in popularity as a means of preparing patients for surgery. In recent years, these ‘surgery schools’ have evolved from primarily informing patients of what to expect before and after surgery, to providing support and encouragement for patients to ‘prehabilitate’ prior to surgery, through improving physical fitness, nutrition and emotional wellbeing.Method: a survey aimed at clinicians delivering surgery schools was employed to capture a national overview of activity to establish research and practice priorities in this area. The survey was circulated online via the Enhanced Recovery after Surgery UK Society and the Centre for Perioperative Care mailing lists as well as social media.Results: there were 80 responses describing 28 active and 4 planned surgery schools across the UK and Ireland. Schools were designed and delivered by multidisciplinary teams, contained broadly similar content and were well attended. Most were funded by the National Health Service. The majority included aspects of prehabilitation most commonly the importance of physical fitness. Seventy five percent of teams collected patient outcome data, but less than half collected data to establish the clinical effectiveness of the school. Few describe explicit inclusion of evidence-based behavior change techniques, but collaboration and partnerships with community teams, gyms and local charities were considered important in supporting patients to make changes in health behaviors prior to surgery.Conclusion: it is recommended that teams work with patients when designing surgery schools and use evidence-based behavior change frameworks and techniques to inform their content. There is a need for high-quality research studies to determine the clinical effectiveness of this type of education intervention
Atypical benign partial epilepsy of childhood with acquired neurocognitive, lexical semantic, and autistic spectrum disorder
AbstractAtypical benign partial epilepsy (ABPE) of childhood or pseudo-Lennox syndrome is a form of idiopathic focal epilepsy characterized by multiple seizure types, focal and/or generalized epileptiform discharges, continuous spike–wave during sleep (CSWS), and sometimes reversible neurocognitive deficits. There are few reported cases of ABPE describing detailed correlative longitudinal follow-up of the various associated neurocognitive, language, social communicative, or motor deficits, in parallel with the epilepsy. Furthermore, the molecular inheritance pattern for ABPE and the wider spectrum of epilepsy aphasia disorders have yet to be fully elucidated. We describe the phenotype–genotype study of a boy with ABPE with follow-up from ages 5 to 13years showing acquired oromotor and, later, a specific lexical semantic and pervasive developmental disorder. Exome sequencing identified variants in SCN9A, CPA6, and SCNM1. A direct role of the epilepsy in the pathogenesis of the oromotor and neurocognitive deficits is apparent
Understanding adherence to physiotherapy: findings from an experimental simulation and an observational clinical study
This article reports two studies assessing the influence of self-efficacy, outcome expectancies and aversive feedback on different aspects of adherence. Study 1 employed a computer simulation of physiotherapy to test experimentally the effects of aversive feedback (i.e., loud noise) experienced during simulated therapy on adherence behaviour in a student population. Study 2 examined whether similar effects of aversive feedback (i.e., pain) experienced during physiotherapy in a clinical setting would be observed in a longitudinal questionnaire study of predictors of adherence. In both studies, self-efficacy and outcome expectancies were assessed at baseline and after experience of the task (performing simulated or actual physiotherapy). Study 1 found that self-efficacy and outcome expectancies predicted persistence with simulated physiotherapy (i.e., completing the experimental session), whereas aversive feedback influenced adherence during sessions (i.e., correct response rate). Study 2 found that self-efficacy and outcome expectancies predicted persistence with actual physiotherapy (i.e., completing the prescribed number of sessions). Aversive feedback and outcome expectancies influenced adherence during sessions. We conclude that different factors predict different aspects of adherence behaviour. It is therefore important to measure both persistence over time and adherence during sessions, and to investigate the predictors of each dimension of adherence