975 research outputs found

    Climate trends of the North American prairie pothole region 1906–2000

    Get PDF
    The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1◦C in the north to nearly 10◦C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0◦C, while maximum daily temperatures cooled by 0.15◦C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand

    Adam and Eve, Designed Diversity, and Allele Frequencies

    Get PDF
    Theistic evolutionists present multiple genetic arguments against a literal Adam and Eve. One key argument asserts it would be impossible for a single human couple to give rise to the genetic diversity seen in the modern human population. This implicitly assumes Adam and Eve would have been created without internal genetic diversity. If this were true, all observed variations would have to arise recently via random mutations. This would require incredibly high mutation rates, logically leading to rapid extinction. Yet, Adam and Eve could have been created massively heterozygous. We have argued for over a decade that they could have been created with “designed diversity”. We have previously shown that a vast amount of genetic variation could have been pre-programmed into their genomes. This could logically provide the genetic basis for: 1) our human gifts and talents; 2) the many forms of human beauty; and 3) the various ways people have rapidly adapted to new habitats. It is also claimed that the currently observed human allele frequency patterns could not arise from a single couple. The logic here is that, since there were only four sets of chromosomes in Eden, all variants would have had an initial frequency of either 25%, 50%, or 75%. Today, most allelic variants have frequencies in the range of 0–10%. Therefore, it is claimed that observed human diversity disproves a literal Adam and Eve. In this paper we have critically examined these arguments. Our analyses highlight several genetic mechanisms that can help reconcile a literal Adam and Eve with the human allele frequency distributions seen today. We use numerical simulation to show that two people, if they contain designed alleles, can in fact give rise to allele frequency distributions of the very same type as are now seen in modern man. We cannot know how God created Adam and Eve, nor exactly how Adam and Eve gave rise to the current human population. However, the genetic argument that there is no way that a literal Adam and Eve could have given rise to the observed human allele frequencies is clearly over-reaching and appears to be theologically reckless. There is no compelling reason to reject Adam and Eve based on modern allele frequencies

    MODELING THE EFFECTS OF TILE DRAIN PLACEMENT ON THE HYDROLOGIC FUNCTION OF FARMED PRAIRIE WETLANDS1

    Get PDF
    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change

    MODELING THE EFFECTS OF TILE DRAIN PLACEMENT ON THE HYDROLOGIC FUNCTION OF FARMED PRAIRIE WETLANDS1

    Get PDF
    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection pro- grams. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wet- land boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change

    A conceptual design study of the reusable reentry satellite

    Get PDF
    Experimentation leading to an understanding of life processes under reduced and extremely low gravitational forces will profoundly contribute to the success of future space missions involving humans. In addition to research on gravitational biology, research on the effects of cosmic radiation and the interruption and change of circadian rhythms on life systems is also of prime importance. Research in space, however, is currently viewed by biological scientists as an arena that is essential, yet largely inaccessible to them for their experimentation. To fulfill this need, a project and spacecraft system described as the Reusuable Reentry Satellite or Lifesat has been proposed by NASA

    Method for separating single-wall carbon nanotubes and compositions thereof

    Get PDF
    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types

    Gestión y política industrial en sectores de alta tecnología: el caso de los semiconductores

    Get PDF
    This case analyzes what elements could entail in the United Stated industrial policy, giving a special emphasis on permanent changing modern high-tech industries environment. At the same time, it is sought to demonstrate that the correct orientation should be aimed to the intensive research and closely related to technological developments. It is argued that change and a flexible response are the necessary ingredients of an industrial policy aimed to meet the requirements of this industry. It specifically focuses on semiconductor companies to illustrate what sector like this could entail for public policy. This sector faces in complex ways a situation of continuous change and interaction through all the stages and processes from products. The behavior of this industry leads to misinterpretations and can lead to apply wrong policies.Este caso analiza qué elementos podrían implicar en la política industrial de Estados Unidos, haciendo especial énfasis en el cambio permanente del entorno de las industrias modernas de alta tecnología. Al mismo tiempo, se busca demostrar que la orientación correcta debe estar dirigida a la investigación intensiva y estrechamente relacionada con los desarrollos tecnológicos. Se sostiene que el cambio y una respuesta flexible son los ingredientes necesarios de una política industrial destinada a satisfacer las necesidades de esta industria. Se centra específicamente en las empresas de semiconductores para ilustrar lo que un sector como este podría implicar para las políticas públicas. Este sector enfrenta de manera compleja una situación de continuo cambio e interacción a través de todas las etapas y procesos de los productos. El comportamiento de esta industria da lugar a malas interpretaciones y puede llevar a aplicar políticas equivocadas
    corecore