18,706 research outputs found

    Effects of space environment on composites: An analytical study of critical experimental parameters

    Get PDF
    A generalized methodology currently employed at JPL, was used to develop an analytical model for effects of high-energy electrons and interactions between electron and ultraviolet effects. Chemical kinetic concepts were applied in defining quantifiable parameters; the need for determining short-lived transient species and their concentration was demonstrated. The results demonstrates a systematic and cost-effective means of addressing the issues and show qualitative and quantitative, applicable relationships between space radiation and simulation parameters. An equally important result is identification of critical initial experiments necessary to further clarify the relationships. Topics discussed include facility and test design; rastered vs. diffuse continuous e-beam; valid acceleration level; simultaneous vs. sequential exposure to different types of radiation; and interruption of test continuity

    Productivity and the Determinants of Efficiency in Irish Agriculture (1996-2006)

    Get PDF
    The competitiveness and productivity of Irish agriculture has been at the forefront of debate in recent times given successive and impending changes to agricultural policy. This paper examines the trend in total factor productivity in Irish agriculture over the recent past and explores the effects of specific variables on relative efficiency levels. The findings of this research have shown that productivity growth was highest in the Cattle Rearing sector followed by the Dairy, Cattle Finishing, Sheep and Cereals sectors during the period 1996 to 2006. The research has also shown that efficiency levels are, in general, positively correlated with extension use soil quality, the overall size of the farm, the level of intensification and the level of specialisation. The use of artificial insemination was also positively correlated with efficiency in the Dairy sectorProduction Economics,

    Subgap states at ferromagnetic and spiral-ordered magnetic chains in two-dimensional superconductors. II. Topological classification

    Get PDF
    C.J.F.C. acknowledges studentship funding from EPSRC under Grant No. EP/M506631/1.We investigate the topological classification of the subgap bands induced in a two-dimensional superconductor by a densely packed chain of magnetic moments with ferromagnetic or spiral alignments. The wave functions for these bands are composites of Yu-Shiba-Rusinov-type states and magnetic scattering states and have a significant spatial extension away from the magnetic moments. We show that this spatial structure prohibits a straightforward extraction of a Hamiltonian useful for the topological classification. To address the latter correctly, we construct a family of spatially varying topological Hamiltonians for the subgap bands adapted for the broken translational symmetry caused by the chain. The spatial dependence in particular captures the transition to the topologically trivial bulk phase when moving away from the chain by showing how this, necessarily discontinuous, transition can be understood from an alignment of zeros with poles of Green’s functions. Through the latter, the topological Hamiltonians reflect a characteristic found otherwise primarily in strongly interacting systems.Publisher PDFPeer reviewe

    Subgap states at ferromagnetic and spiral-ordered magnetic chains in two-dimensional superconductors. I. Continuum description

    Get PDF
    Funding: C.J.F.C. acknowledges studentship funding from EPSRC under Grant No. EP/M506631/1.We consider subgap bands induced in a two-dimensional superconductor by a densely packed chain of magnetic moments with ferromagnetic or spiral alignments. We show that by contrast with sparsely packed chains a consistent description requires that all wavelengths are taken into account for the scattering at the magnetic moments. The resulting subgap states are a composition of Yu-Shiba-Rusinov-type states and magnetic scattering states, whose mixture becomes especially important to understand the nature and dimensional renormalization of gap closures for spiral magnetic alignments under increasing scattering strength, particularly as the spiral becomes commensurate with the Fermi wavelength. The results are fully analytic in the form of Green’s functions and provide the tools for further analysis of the properties of the subgap states.Publisher PDFPeer reviewe

    Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter

    Get PDF
    We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of sigma, omega, and rho mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte

    Abundance analysis, spectral variability, and search for the presence of a magnetic field in the typical PGa star HD19400

    Get PDF
    The aim of this study is to carry out an abundance determination, to search for spectral variability and for the presence of a weak magnetic field in the typical PGa star HD19400. High-resolution, high signal-to-noise HARPS spectropolarimetric observations of HD19400 were obtained at three different epochs in 2011 and 2013. For the first time, we present abundances of various elements determined using an ATLAS12 model, including the abundances of a number of elements not analysed by previous studies, such as Ne I, Ga II, and Xe II. Several lines of As II are also present in the spectra of HD19400. To study the variability, we compared the behaviour of the line profiles of various elements. We report on the first detection of anomalous shapes of line profiles belonging to Mn and Hg, and the variability of the line profiles belonging to the elements Hg, P, Mn, Fe, and Ga. We suggest that the variability of the line profiles of these elements is caused by their non-uniform surface distribution, similar to the presence of chemical spots detected in HgMn stars. The search for the presence of a magnetic field was carried out using the moment technique and the SVD method. Our measurements of the magnetic field with the moment technique using 22 Mn II lines indicate the potential existence of a weak variable longitudinal magnetic field on the first epoch. The SVD method applied to the Mn II lines indicates =-76+-25G on the first epoch, and at the same epoch the SVD analysis of the observations using the Fe II lines shows =-91+-35G. The calculated false alarm probability values, 0.008 and 0.003, respectively, are above the value 10^{-3}, indicating no detection.Comment: 13+6 pages, 14 figures, 6+1 tables, including the online-only material, accepted for publication in MNRA

    Chern-simon type photon mass from fermion electric dipole moments at finite temperature in 3+1 dimensions

    Full text link
    We study the low energy effective field theory of fermions with electric and magnetic dipole moments at finite temperature. We find that at one loop there is an interaction term of the Chern-Simon form LI=mΌ AÎœF~ΌΜ{\cal L_I}=m_\mu\>A_\nu {\tilde F}^{\mu\nu}. The four vector mΌ≃diÎŒimi2 ∂Ό (lnT)m_\mu \simeq d_i \mu_i m_i^2 ~{\partial_\mu}\>(ln T) is interpreted as a Chern- Simon type mass of photons, which is determined by the electric (magnetic) dipole moments did_i (ÎŒi\mu_i) of the fermions in the vacuum polarisation loop diagram. The physical consequence of such a photon mass is that, photons of opposite circular polarisations, propagating through a hot medium, have different group velocities. We estimate that the time lag between the arrival times of the left and right circularly polarised light signals from pulsars. If the light propagates through a hot plasma (where the temperature in some regions is T∌100MeVT \sim 100 MeV) then the time lag between the two circularly polarised signals of frequency ω\omega will be Δt(ω)≃10−6/ω\Delta t(\omega) \simeq 10^{-6} /\omega. It may be possible to observe this effect in pulsar signals which propagate through nebula at high temperatures.Comment: plain TeX, 9 page

    Boundary fields and renormalization group flow in the two-matrix model

    Get PDF
    We analyze the Ising model on a random surface with a boundary magnetic field using matrix model techniques. We are able to exactly calculate the disk amplitude, boundary magnetization and bulk magnetization in the presence of a boundary field. The results of these calculations can be interpreted in terms of renormalization group flow induced by the boundary operator. In the continuum limit this RG flow corresponds to the flow from non-conformal to conformal boundary conditions which has recently been studied in flat space theories.Comment: 31 pages, Late
    • 

    corecore