12,473 research outputs found

    Existence of Compactly Supported Global Minimisers for the Interaction Energy

    Full text link
    The existence of compactly supported global minimisers for continuum models of particles interacting through a potential is shown under almost optimal hypotheses. The main assumption on the potential is that it is catastrophic, or not H-stable, which is the complementary assumption to that in classical results on thermodynamic limits in statistical mechanics. The proof is based on a uniform control on the local mass around each point of the support of a global minimiser, together with an estimate on the size of the "gaps" it may have. The class of potentials for which we prove existence of global minimisers includes power-law potentials and, for some range of parameters, Morse potentials, widely used in applications. We also show that the support of local minimisers is compact under suitable assumptions.Comment: Final version after referee reports taken into accoun

    A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity

    Get PDF
    We consider a one dimensional transport model with nonlocal velocity given by the Hilbert transform and develop a global well-posedness theory of probability measure solutions. Both the viscous and non-viscous cases are analyzed. Both in original and in self-similar variables, we express the corresponding equations as gradient flows with respect to a free energy functional including a singular logarithmic interaction potential. Existence, uniqueness, self-similar asymptotic behavior and inviscid limit of solutions are obtained in the space P2(R)\mathcal{P}_{2}(\mathbb{R}) of probability measures with finite second moments, without any smallness condition. Our results are based on the abstract gradient flow theory developed in \cite{Ambrosio}. An important byproduct of our results is that there is a unique, up to invariance and translations, global in time self-similar solution with initial data in P2(R)\mathcal{P}_{2}(\mathbb{R}), which was already obtained in \textrm{\cite{Deslippe,Biler-Karch}} by different methods. Moreover, this self-similar solution attracts all the dynamics in self-similar variables. The crucial monotonicity property of the transport between measures in one dimension allows to show that the singular logarithmic potential energy is displacement convex. We also extend the results to gradient flow equations with negative power-law locally integrable interaction potentials

    Numerical Study of a Particle Method for Gradient Flows

    Get PDF
    We study the numerical behaviour of a particle method for gradient flows involving linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure at the particle level, and enables us to obtain a gradient descent formulation after time discretisation. We give several simulations to illustrate the validity of this method, as well as a detailed study of one-dimensional aggregation-diffusion equations.Comment: 27 pages, 21 figure

    Proper Motion of Pulsar B1800-21

    Get PDF
    We report high angular resolution, multi-epoch radio observations of the young pulsar PSR B1800-21. Using two pairs of data sets, each pair spanning approximately a ten year period, we calculate the proper motion of the pulsar. We obtain a proper motion of mu_alpha=11.6 +- 1.8 mas/yr, mu_delta=14.8 +- 2.3 mas/yr, which clearly indicates a birth position at the extreme edge of the W30 supernova remnant. Although this does not definitively rule out an association of W30 and PSR B1800-21, it does not support an association.Comment: 13 pages, 1 color figure. Replaced with version accepted for publication in Astrophysical Journa

    A development of logistics management models for the Space Transportation System

    Get PDF
    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support

    A well-posedness theory in measures for some kinetic models of collective motion

    Full text link
    We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models
    corecore