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Abstract. We study the numerical behaviour of a particle method for gradient flows involving
linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-
overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure
at the particle level and enables us to obtain a gradient descent formulation after time discretisation.
We give several simulations to illustrate the validity of this method, as well as a detailed study of
one-dimensional aggregation-diffusion equations.

1. Introduction

In this work we introduce a new particle method for approximating the solutions to evolution
equations of the form{

ρt = ∇ ·
[
ρ∇
(
H ′(ρ(x)) + V (x) +W ∗ ρ(x)

)]
, t > 0, x ∈ Rd,

ρ(0, ·) = ρ0(·),
(1.1)

where ρ(t, ·) ≥ 0 is the unknown probability measure and ρ0 is a fixed element of P2(Rd), the set of
Borel probability measures on Rd with bounded second moment. Note that we denote by the same
symbol a probability measure and its density, whenever the latter exists. The operator ∗ denotes
the convolution, H : [0,∞) → R is the density of internal energy, V : Rd → R is the confinement
potential, and W : Rd → R is the interaction potential. These equations are ubiquitous in many
applications, ranging from granular media and porous medium flows to collective behaviour models
in mathematical biology and self-assembly, see [6, 8, 12, 36, 37] and the references therein.

Recent advances in the analysis of the equation (1.1) are mainly based on variational schemes
using the natural gradient flow structure in the space of probability measures, see e.g. [26, 21, 31,
38, 1, 15]. We define the continuum energy functional E : P2(Rd)→ R ∪ {−∞,+∞} by

E(ρ) =



∫
Rd

[
H(ρ(x)) + V (x)ρ(x) + 1

2W ∗ ρ(x)ρ(x)
]

dx if ρ ∈ Pac,2(Rd),∫
Rd

[
V (x) + 1

2W ∗ ρ(x)
]

dρ(x) if ρ 6∈ Pac,2(Rd)
andH = 0,

+∞ otherwise,

where Pac,2(Rd) is the subset of P2(Rd) of probability measures which are absolutely continuous
with respect to the Lebesgue measure. The functions H,V and W satisfy the following hypotheses.

Hypothesis 1. V is a function in C1(Rd) and W is a symmetric, locally integrable function in
C1(Rd \ {0}) with W (0) = 0.

Hypothesis 2. H is a convex function in C1((0,∞)) ∩ C0([0,∞)) with superlinear growth at
infinity and H(0) = 0. Furthermore, h(λ) := λdH

(
λ−d

)
is convex and non-increasing on (0,∞).
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The assumption W (0) = 0 is made without loss of generality. Indeed, if W (0) is finite, then W
can be shifted “up” or “down” to get W (0) = 0; if W has a singularity at 0, then setting W (0) := 0
does not affect the physical behaviour of a system governed by the potential W . The assumptions
that H(0) = 0 and h is convex and non-increasing imply that the energy E is displacement convex
if, for example, V = W = 0, see [26], [25, Section 4] and [38, Theorem 5.15]. Also note that the

classical cases H(ρ) = ρ log ρ and H(ρ) = ρm

m−1 (m > 1) satisfy all the required assumptions.
The underlying topology on the probability measures in this paper is given by the quadratic

Wasserstein distance d2(ρ, µ), which is defined between two measures ρ and µ in P2(Rd) by

d2(ρ, µ) = inf
γ∈Π(ρ,µ)

[∫
Rd×Rd

|x− y|2 dγ(x, y)

] 1
2

,

where Π(ρ, µ) is the space of probability measures (also called transport plans) on Rd×Rd with first
marginal ρ and second marginal µ. Let us fix a final time T > 0. We say that ρ : [0, T ] → P2(Rd)
is a continuum gradient flow solution with initial condition ρ0 if{

ρ′(t) = −∇P2(Rd)E(ρ(t)),

ρ(0) = ρ0,
(1.2)

holds in the sense of distributions on [0, T ]×Rd, see [1, Equation (8.3.8)]. The operator ∇P2(Rd) is

the classical quadratic Wasserstein gradient on P2(Rd), which takes the explicit form

∇P2(Rd)E(ρ) = −∇ ·
(
ρ∇δE

δρ

)
for all ρ ∈ P2(Rd),

where δE
δρ = H ′(ρ) + V + W ∗ ρ is the first variation density of E at point ρ. As a by-product of

the general theory developed for instance in [1], gradient flow solutions to (1.2) are weak solutions
to (1.1). Note that if theoretical issues such as the existence and uniqueness of solutions to the
continuum gradient flow (1.2) are of interest, appropriate additional assumptions must be imposed
on H,V,W and ρ0, see [21, 38, 1].

We propose below to approximate solutions to the continuum gradient flow (1.2) by finite atomic
probability measures represented by finite numbers of particles. The basic idea is to restrict the
continuum gradient flow to the discrete setting of atomic measures by performing the steepest
descent of a suitable approximation of the energy E defined on finite numbers of Dirac masses,
and apply a discrete analogue of the JKO scheme for the Fokker-Planck equation proposed by
Jordan, Kinderlehrer and Otto [21]. The theoretical underpinning of this method is studied in the
companion paper [17], where the convergence of the discrete gradient flow to the continuum one is
proved in the framework proposed by Serfaty in [35, 34], in the special case of V = W = 0 in one
dimension for equally-weighted particles and under additional appropriate hypotheses on H. The
goal of the present paper is to give numerical evidence of such convergence and to motivate possible
extensions of the theoretical result in [17] to nonzero confinement and interaction potentials (even
with possible singularities), as well as to higher dimensions and unequally-weighted particles.

Let us mention that other numerical methods have been developed to conserve particular prop-
erties of solutions of the continuity equation (1.1). In [7, 12] the authors developed finite-volume
methods preserving the decay of energy at the semi-discrete level, along with other important prop-
erties like non-negativity and mass conservation. Particle methods for these equations without the
diffusion term are known to be convergent under suitable assumptions on the potentials V and W
since these results are connected to the question of the mean-field limit and rigorous derivation of
the equations from particle trajectories, see [13] for instance. In the case of diffusion equations,
particle methods based on suitable regularisations of the flux of the continuity equation (1.1) have
been proposed in [32, 18, 23, 24]; note that an early particle method was derived for collisional
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kinetic equations in [33]. Our steepest descent method is purely variational and is based on reg-
ularising the internal part of the energy E by substituting particles by non-overlapping blobs, as
we discuss next. Let us mention that the numerical approximation of the JKO variational scheme
has already been tackled by different methods using pseudo-inverse distributions in one dimension
[19, 8, 10], diffeomorphisms [16], or solving for the optimal map in a JKO step [5]. Our method
avoids these computationally intensive procedures by the approximation of the energy in the dis-
crete setting. Finally, note that gradient-flow-based Lagrangian methods for higher-order, drift
diffusion and Fokker-Planck equations have recently been proposed in [29, 30, 28, 22].

The paper is structured as follows. In Section 2 we give a summary of the method and the
derivation of the discrete gradient flow in a more general setting than that considered in [17]. Section
3 is dedicated to the derivation of the numerical scheme used to approximate the continuum gradient
flow (1.2), that is an explicit version of the JKO scheme, as well as to a numerical validation study of
the scheme via diffusion equations. We stress that, from the scientific computing point of view, this
is a preliminary study whose aim is to motivate the presented particle method. Finally, in Section
4 we give the numerical results for various one-dimensional aggregation-diffusion equations—we
emphasise that this particle method, despite its simplicity, is able to capture the critical mass for
the modified one-dimensional Keller-Segel model.

2. Particle method and discrete gradient flows

In this method, the underlying probability measure is characterised by the particles’ posi-
tions (x1, . . . , xN ) ∈ (Rd)N = RNd and the associated weights (or masses) w := (w1, · · · , wN ) ∈
RN , where N is the total number of particles considered. Throughout this paper, the positions
(x1, . . . , xN ) are evolving in time but the weights w are fixed and such that wi > 0 and

∑N
i=1wi = 1.

Also, we denote by RNdw the space of particles with weights w, that is, x := (x1, . . . , xN ) ∈ RNdw
means that each particle xi is in Rd and is associated with the weight wi. Notice the boldface font
when referring to elements of RNdw .

Remark 2.1. As an important convention in the rest of the paper, whenever particles x ∈ RNdw are
considered, they are assumed to be distinct, i.e., xi 6= xj if i 6= j. Moreover, in one dimension, the
particles are assumed to be sorted increasingly, i.e., xi+1 > xi for all i ∈ {1, . . . , N − 1}.

2.1. Discrete gradient flow. Consider N particles x := (x1, . . . , xN ) ∈ RNdw with fixed weights
w. The most natural representation of the underlying probability measure is the empirical measure

x 7→ µN =

N∑
i=1

wiδxi , (2.1)

which belongs to the space of atomic measures

AN,w(Rd) :=

{
µ ∈ P2(Rd) | ∃x ∈ RNdw , µ =

N∑
i=1

wiδxi

}
.

Definition 2.2 (Discrete energy). We define the discrete energy EN : AN,w(Rd)→ R by

EN (µN ) =

N∑
i=1

|Bi|H
(
wi
|Bi|

)
+

N∑
i=1

wiV (xi) +
1

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW (xi − xj), (2.2)

where Bi is the open ball of centre xi and radius 1
2 minj 6=i |xi − xj |, and |Bi| is the volume of Bi.

Note that EN is finite over the whole AN,w(Rd) since, by the Hypotheses 1 and 2, H,V and W

are pointwise finite. The essence of this discrete approximation EN on AN,w(Rd) of the continuum
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energy E on P2(Rd) lies in the treatment of the internal part
∫
Rd H

(
ρ(x)

)
dx of the energy E, which

becomes infinity on point masses; the point mass of each particle is uniformly spread to circumvent
this problem. To this end, consider

x 7→ ρN =
N∑
i=1

wi
χBi

|Bi|
, (2.3)

where χBi is the characteristic function of the ball Bi. Clearly ρN is in Pac,2(Rd), and thus the
internal part of the energy is well-defined for ρN . Note that the representation ρN does not involve
overlapping of balls, but contains “gaps” between balls whose sizes are expected to decrease as the
number of particles increases. Then, using (2.3) for the internal part of the energy and (2.1) for
the confinement and interaction parts, EN defined in (2.2) is exactly∫

Rd

H(ρN (x)) dx+

∫
Rd

V (x) dµN (x) +

∫
Rd×Rd

W (x− y) dµN (y) dµN (x).

Here the diagonal terms in the interaction potential vanish since W (0) = 0 by Hypothesis 1. This
choice of non-overlapping particles has the main advantage of reducing the computational cost of
the internal part of the discrete energy functional. One can already notice that this approach allows
us to treat diffusive effects simultaneously with confinement and interaction ones in a very natural
way; this is another advantage of our method, as it becomes clearer throughout this paper.

Since the expression above depends essentially on x ∈ RNdw , we can define the discrete energy
equivalently as a function of x ∈ RNdw instead of µN ∈ AN,w(Rd):

ẼN (x) := EN (µN ) for all µN ∈ AN,w(Rd) with particles x ∈ RNdw . (2.4)

Definition 2.3 (Subdifferential in Hilbert spaces). Let X be a Hilbert space with inner product
〈·, ·〉X and φ : X → R. We define the subdifferential ∂φ : X → 2X of φ, for all x ∈ X, by the subset

∂φ(x) =

{
z ∈ X | lim inf

y→x

φ(y)− φ(x)− 〈z, y − x〉X
|y − x|X

≥ 0

}
.

If ∂φ(x) is not empty, then ∂0φ(x) is defined to be the unique element in ∂φ(x) with minimal norm.

Now, we say that x : [0, T ] → RNdw is a discrete gradient flow solution with initial condition
x0 ∈ RNd if the differential inclusion

w · x′(t) ∈ −∂ẼN (x(t)) for almost all t ∈ (0, T ] (2.5)

is satisfied, and x(0) = x0. Here x′(t) is the velocity of the curve x(t) and w ·x′ is the element-wise
product (w1x

′
1, . . . , wNx

′
N ). This formulation is not a standard differential inclusion because of the

presence of the weights. To cope with this, we introduce the following inner product on RNdw .

Definition 2.4 (Weighted inner product on RNdw ). For all x,y ∈ RNdw we define the weighted inner
product between x and y as

〈x,y〉w =
N∑
i=1

wi〈xi, yi〉Rd .

From now on, the Euclidean space RNdw is endowed with this inner product. This definition
clearly induces the weighted norm

|x|w :=
√
〈x,x〉w =

√∑N
i=1wi|xi|2Rd for all x ∈ RNdw . (2.6)

It also induces a slightly more general subdifferential structure: for any functional φ : RNdw → R,

∂wφ(x) :=
{
z ∈ RNdw | w · z ∈ ∂φ(x)

}
for all x ∈ RNdw ,
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where again w ·z is the element-wise product between w and z; and we can then define the element
∂0
wφ(x) with minimal norm accordingly. The discrete gradient flow inclusion (2.5) can now be

rewritten more naturally as{
x′(t) ∈ −∂wẼN (x(t)) for almost all t ∈ (0, T ],

x(0) = x0.
(2.7)

This is the discrete gradient flow structure that is used from now on.

Remark 2.5. In [17] the authors showed that in one dimension with V = W = 0 the discrete
energy EN Γ-converges (in the d2-topology, see Definition A.3) to the continuum one E if adequate
additional assumptions are imposed on H.

2.2. p-approximated discrete gradient flow. The gradient flow (2.7) is written as a differential
inclusion instead of an ordinary differential equation, primarily because the radius 1

2 minj 6=i |xi−xj |
of the balls Bi is not a smooth function of the positions in the definition of the energy ẼN . As a
result, the energy ẼN is not a smooth function of the positions x when the radius of the ball Bi is
determined by more than one particle.

If ẼN is lower semi-continuous and convex, and x0 ∈ {y ∈ RNdw | ∂wẼN (y) 6= ∅}, it is known
by [4, Theorem 1 of Section 3.2] that the discrete gradient flow (2.7) is well-posed and the equation

x′(t) = −∂0
wẼN (x(t)) is satisfied for almost every t ∈ [0, T ]. Note that, in our case, the lower semi-

continuity of ẼN is trivial to check by the assumptions on H, whereas the convexity is proved in
Proposition A.6 for convex potentials V and W in one dimension. Although the element of minimal

norm ∂0
wẼN (x(t)) can be computed in some situations as in [17] (for the special case of equally-

weighted particles with internal energy only and in one dimension), the detailed procedure is usually

involved and is not convenient for numerical implementation. In theory, one can approximate ẼN
by a differentiable function usually characterised by a parmeter, where the minimal norm element
of the subdifferential is recovered as the limit of the gradient of the approximation as the parameter
goes to infinity. A common choice of such an approximation is

Y p
N (x) := inf

y∈RNd
w

(
ẼN (y) + p

2 |x− y|2w
)
,

depending on the parameter p > 0. Then Y p
N is differentiable almost everywhere in RNdw , ∇Y p

N is

called the Yosida approximation of ∂wẼN , and

∇Y p
N (x) −−−→

p→∞
∂0
wẼN (x) for all x ∈ RNdw ,

see [4, Theorem 2 of Section 3.1 and Theorem 4 of Section 3.4]. However, the Yosida approxima-
tion requires another optimisation, and is therefore not very well adapted to the computation of

∂0
wẼN (x). An alternative is to approximate the radius of the balls Bi in the definition of ẼN by a

smooth function.

Definition 2.6 (p-approximation of the minimum function). For p > 0 and integer s ≥ 2, the
function minp : (0,∞)s → (0,∞) is defined as

minp(x1, . . . , xs) =


(

1

s

s∑
i=1

x−pi

)− 1
p

if x1, . . . , xs ∈ (0,∞),

0 otherwise.

We call minp(x1, . . . , xs) the p-approximation of the minimum function min(x1, · · · , xs).
The following proposition, whose proof is straightforward and left to the reader, justifies the use

of the p-approximation of the minimum function.
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Proposition 2.7. Let s ≥ 2. The following statements hold.

(1) Let p > 0. Then minp ∈ C∞((0,∞)s).

(2) minp(x)→ min(x) as p→∞ for all x ∈ (0,∞)s.

(3) p 7→ minp(x) is non-increasing on (0,∞) for all x ∈ (0,∞)s.

(4) Let p > 0. Then minp(x) ≥ min(x) for all x ∈ (0,∞)s, with equality if xi = xj for all i, j.

(5) Let p ≥ 1. Then minp(x) ≤ s1/p min(x) for all x ∈ (0,∞)s.

Now the discrete energy is further approximated using a smoothed radius as below.

Definition 2.8 (p-approximated discrete energy). Let p > 0. The p-approximated discrete energy
EpN : AN,w(Rd)→ R is defined by

EpN (µN ) =
N∑
i=1

|Bp
i |H

(
wi
|Bp

i |

)
+

N∑
i=1

wiV (xi) +
1

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW (xi − xj), (2.8)

for all µN ∈ AN,w(Rd) with particles x ∈ RNdw . Here Bp
i is the ball with the new radius

1
2 minp{|xi − xj | | j 6= i} = 1

2

(
1

N−1

∑N
j=1
j 6=i
|xi − xj |−p

)− 1
p

.

As in (2.4), we can define the p-approximated discrete energy on RNdw rather than on AN,w(Rd):

ẼpN (x) := EpN (µN ) for all µN ∈ AN,w(Rd) with particles x ∈ RNdw . (2.9)

We say that x : [0, T ]→ RNdw is a p-approximated discrete gradient flow solution with initial condi-
tion x0 ∈ RNdw if {

x′(t) = −∇wẼpN (x(t)) for almost all t ∈ (0, T ],

x(0) = x0,
(2.10)

where the weighted gradient ∇w is naturally defined on RNdw by

∇w :=

(
1

w1

∂

∂x1
, . . . ,

1

wN

∂

∂xN

)
.

Remark 2.9. Whenever d = 1 and V and W are convex, we know by Proposition A.6 that ẼpN is
convex, and therefore the p-approximated discrete gradient flow (2.10) is well-posed.

Remark 2.10. The interest of the p-approximation of the discrete gradient flow only lies in the
numerical simplicity of coding a gradient descent on an ODE system such as (2.10) rather than on
a differential inclusion such as (2.7). The p-approximation is indeed not needed for the theoretical
proof given in [17] of the convergence of the discrete gradient flow to the continuum one, since, as

already mentioned, in that specific case the minimal norm element of ∂ẼN is explicitly computable.

Remark 2.11. Approximations of the minimum function other than the one given in Definition 2.6
are possible. One example is

minp(x1, . . . , xs) =

{
−1
p log

(
1
s

∑s
i=1 e

−pxi
)

if x1, . . . , xs ∈ (0,∞),

0 otherwise.

The properties of minp given in Proposition 2.7 are not enough to say that the p-approximated
discrete gradient flow (2.10) converges to the discrete one (2.7) as p→∞ in some sense. This still
needs to be checked if we want to justify the numerical use of the p-approximated gradient flow. In
the next section and in Appendix A we prove that this is the case in dimension one since we can
there exploit the convexity of the discrete energies.
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2.3. One-dimensional case.

Definition 2.12 (Inter-particle distance). For any particles x ∈ RNw we denote the inter-particle
distance by the positive quantity (eventually +∞ by convention)

∆xi := xi − xi−1 for i ∈ {1, . . . , N + 1},

with the convention x0 = −∞ and xN+1 = +∞. We also write, for p > 0,

ri = min(∆xi,∆xi+1) and rpi = minp(∆xi,∆xi+1) for all i ∈ {1, . . . , N}.

Note that ri = |Bi| and rpi = |Bp
i |.

Since particles are sorted increasingly by convention, the p-approximated discrete energy (2.8)
in dimension one can be defined in the simpler form

EpN (µN ) =
N∑
i=1

rpiH

(
wi
rpi

)
+

N∑
i=1

wiV (xi) +
1

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW (xi − xj), (2.11)

for all µN ∈ AN,w(R) with particles x ∈ RNdw . The equivalent formulation of the energy ẼpN on the
particles is defined in dimension one accordingly, see (2.9).

In order to check that the p-approximated discrete gradient flow defined above indeed approxi-
mates the discrete one, we need a few elements of maximal monotone operator theory (see [3, 4, 9]
for a detailed overview of the theory). These notions and results being quite abstract, they are
only given in Appendix A. There we show how to use this theory to prove the convergence of the
p-approximated discrete gradient flow to the discrete one in a precise sense, in the case when V and
W are convex; we therefore justify the numerical use of the p-approximated gradient flow (2.10)
(at least in the case when V and W are convex and d = 1).

Remark 2.13. In this method, one reason why we decide to discretise according to non-overlapping
balls, rather than, for example, Voronoi cells (see for instance [20] for a detailed account on Voronoi
cells), is to allow for simpler computations of the discrete energies, which in turn gives rise to less
costly simulations. In fact, this is not very relevant in one dimension since then the implementation
of Voronoi cells is actually not more costly than that of non-overlapping balls; the one-dimensional
simulations given below, which are run according to the non-overlapping balls described above,
should therefore be seen as an initial validation of the method and as test cases which need to be
extended to higher dimensions in a future work.

3. Numerical scheme and validation

Here a general variational formulation is applied to the discrete setting described above, leading
to our numerical scheme giving the particles’ positions at discrete time steps (see [1, 2, 21] for a
Fokker-Planck motivation and its generalisation to curves in probability spaces). For the sake of
generality the derivation of the scheme is partly done for the discrete gradient flow, rather than the
p-approximated one. The simulations given later were, however, performed in the p-approximated
setting only. Note also that, in this section, some indices N and p are dropped for clarity.

3.1. The scheme. Take (tn)Mn=0 ⊂ [0, T ] a subdivision of the time interval [0, T ] and a time-step

size ∆t = ∆nt (eventually adaptive) such that tn = t0 +
∑n−1

i=0 ∆it for all n ∈ {1, . . . ,M}. Suppose

that, for some n ∈ {0, . . . ,M − 1}, we know µn ∈ AN,w(Rd), where µn is the empirical measure of
an approximated discrete gradient flow solution at time tn. Then we want to get an approximated
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discrete gradient flow solution at the time tn+1, that is µn+1. To this end we use the JKO scheme,
i.e., we choose µn+1 as

µn+1 := argmin
µ∈AN,w(Rd)

{
1

2∆t
d2

2(µn, µ) + EN (µ)

}
, (3.1)

where we recall that d2 is the quadratic Wasserstein distance. In the following any object with sub-
or superscript n or n+ 1 is associated with the time step n or n+ 1, respectively.

From now on, apart from a two-dimensional test in Section 3.4.5, the setting is one-dimensional.

3.1.1. Computation of the Wasserstein distance. Let us compute the Wasserstein distance in (3.1).
For each n ∈ {0, . . . ,M − 1} and approximation µn and µ ∈ AN,w(R), we directly get

d2
2(µn, µ) =

N∑
i=1

wi(x
n
i − xi)2, (3.2)

where xn = (xn1 , . . . , x
n
N ) and x = (x1, . . . , xN ) are the particles of µn and µ, respectively, which

leads to the scheme

µn+1 := argmin
µ∈AN,w(R)

(
N∑
i=1

wi
(xni − xi)2

2∆t
+ EN (µ)

)
. (3.3)

Clearly the scheme (3.3) on the empirical measures can be equivalently rewritten on the particles:

w · xn+1 := argmin
x∈RN

w

(
N∑
i=1

wi
(xni − xi)2

2∆t
+ ẼN (x)

)
, (3.4)

where w·xn+1 is the element-wise multiplication between the vectors w and xn+1. The minimisation
problem (3.4) is characterised by

0 ∈ ∂w

(
N∑
i=1

wi
(xni − x

n+1
i )2

2∆t
+ ẼN (xn+1)

)
. (3.5)

When ẼN is convex, (3.5) is precisely the backward Euler scheme of the differential inclusion (2.7).

3.1.2. Minimisation and final form of the scheme. Let p > 0. We now return to the p-approximated

setting, i.e., we consider (3.4) (and equivalently (3.3)) with ẼpN instead of ẼN (and equivalently

EpN instead of EN ). We want to minimise, over the whole set RNw , the functional in the argmin
operator in (3.4) (and (3.3)) to find our approximation xn+1 (and µn+1) at time step n+ 1. First

note that, for each n ∈ {0, . . . ,M − 1}, we can write the discrete energy ẼpN as

ẼpN (xn+1) =

N∑
i=1

wiE
n+1
i ,

where

En+1
i := rn+1

i H

(
wi

rn+1
i

)
+ wiV (xn+1

i ) +
1

2

N∑
j=1
j 6=i

wjW (xn+1
i − xn+1

j ),

with rn+1
i := rp,n+1

i , see Definition 2.12. For any n ∈ {0, . . . ,M − 1}, (3.5) becomes

xn+1
i = xni −

∆t

wi

N∑
j=1

wj
∂En+1

j

∂xn+1
i

, (3.6)
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where the uninspiring computation of the derivatives in the sum terms is left to the reader. The
scheme (3.6) is the implicit Euler scheme of the ODE (2.10), or equivalently, of the ODE

wi
dxi
dt

= −
∂ẼpN
∂xi

(x), i = 1, 2, . . . , N,

and it coincides with the JKO scheme for ẼpN , as in (3.1). Since the implicit scheme (3.6) is difficult
and costly to solve, its explicit Euler version was used in the numerical examples of this paper:

xn+1
i = xni −

∆t

wi

N∑
j=1

wj
∂Enj
∂xni

. (3.7)

We remind the reader that the convergence of the implicit Euler version of the scheme is presented
in [21] in one dimension. The stability analysis of the explicit scheme (3.7) is not dealt with as it
is not the purpose of the present paper—we are not worried about time stepping stability issues
for large number of particles in this preliminary stage of validation of our new approach. We can
nevertheless indicate that, intuitively, a time step satisfying ∆t ≤ C

N2 for some constant C > 0
should suffice to ensure stability; indeed, this would be in line with the classical CFL condition for
diffusion equations where the mesh size is of order 1

N . Note that this condition was respected in
the simulations presented below. Let us also mention that higher-order time discretisations could
be used in place of the explicit Euler scheme, and would indeed lead to a better time and space
accuracy of the method.

Remark 3.1. It is worth pointing out that our particle method does not aim at being competitive
against classical finite-volume and finite-difference schemes for purely diffusive equations. In fact,
it aims primarily at being simple to implement—even in higher dimensions—and flexible when con-
sidering additional terms to diffusion such as confinement and interaction. In terms of complexity
at each time step, the method is of order N2 regardless of the space dimension, as it actually is
for other finite-volume methods [12]. Note that, however, if we time-discretise (2.7) rather than its
regularised form (2.10), the complexity becomes significantly higher in more than one dimension
(at most of order N3) since then we are required to find the closest neighbour to each particle; in
dimension one the order of complexity is still N2 thanks to the increasing ordering of the particles.

3.2. Initialisation of the scheme. Below we give two different ways of approximating the initial
profile. Let us first introduce the notion of pseudo-inverse.

Definition 3.2 (Pseudo-inverse). Let F : R → [0, 1] be a non-decreasing and right-continuous
function. The pseudo-inverse Φ: [0, 1] → R ∪ {−∞,+∞} of F is the non-decreasing and right-
continuous function defined by

Φ(ε) = inf{x ∈ R | F (x) > ε} for all ε ∈ [0, 1].

3.2.1. Initially equally-weighted particles. If we want to approximate the initial profile ρ0 ∈ P2(R)
with equally-weighted particles, we need to start with unequally-spaced particles. Consider the
pseudo-inverse Φ0 of the cumulative distribution x 7→ ρ0((−∞, x]) of the initial profile. Suppose
wi = 1/N for all i ∈ {1, . . . , N}. Then choose the initial particles x0 := (x0

1, . . . , x
0
N ) ∈ RNw as

x0
i = Φ0

(
2i− 1

2N

)
for all 1 ≤ i ≤ N.

3.2.2. Initially equally-spaced particles. If now we want to approximate the initial profile ρ0 ∈ P2(R)
with equally-spaced particles, we need to assign a different weight to each particle. Consider F0,

9



the cumulative distribution of the initial profile, and x0 ∈ RNw , some chosen equally-spaced initial
particles. Let us define

x0
i± 1

2

= 1
2

(
x0
i + x0

i±1

)
for all 1 ≤ i ≤ N.

Then we choose the weights w as
w1 = F0

(
x0

1+ 1
2

)
,

wi = F0

(
x0
i+ 1

2

)
− F0

(
x0
i− 1

2

)
for all 1 < i < N,

wN = 1− F0

(
x0
N− 1

2

)
.

(3.8)

The weight wi as given in (3.8) for each 1 < i < N is the mass that ρ0 “assigns” to the interval
[xi− 1

2
, xi+ 1

2
], that is, to the Voronoi cell of xi. Note that the choice we have on the initial positions

of the particles x0 is not completely free of constraints: they must be chosen inside the support of ρ0

or the resulting weights are zero. Finally, since the initial particles are chosen to be equally spaced,
only the first and last particles’ locations are needed to determine the locations of all the others;
for the following numerical simulations we give this information under the form Iinit = [x1, xN ].

Remark 3.3. There are two main advantages in the second initialisation approach. The first one
is that it allows a better approximation of the initial profile when there is a strong variation
in the density; indeed one has the freedom to place initial particles in less populated regions.
The second one is that there are no gaps between the initial balls of centres x0

i and diameters
minp(∆x

0
i ,∆x

0
i+1) = min(∆x0

i ,∆x
0
i+1), see Proposition 2.7(4), allowing again a better approxima-

tion of the initial profile.

3.3. Computation of the error. The natural error to compute for our scheme (3.7) is the qua-
dratic Wassertein error.

3.3.1. Error with respect to an exact solution. If we want to get the error between the numerical
and exact solutions we proceed as follows. Let ρ ∈ P2(R) be a continuum gradient flow solution at
the final time T . Also write x ∈ RNw , the approximation of the p-approximated discrete gradient
flow solution obtained with the JKO scheme (3.7) at the final time step M with associated empirical
measure µ := µM . Then we define the quadratic Wasserstein error by

ed2 = d2(ρ, µ).

To compute this, one can use the one-dimensional pseudo-inverse definition of the quadratic Wasser-
stein distance. Let us write F and G the cumulative distributions of ρ and µ, respectively, and Φ
and Ψ their respective pseudo-inverses. Then

ed2 =

(∫ 1

0
(Φ(ε)−Ψ(ε))2 dε

) 1
2

.

We have, for all i ∈ {1, . . . , N},
Ψ(ε) = xi if ε ∈ [Ωi−1,Ωi),

with Ωi :=
∑i

j=1wj and the convention Ω0 = 0. Therefore

ed2 =

(
N∑
i=1

∫ Ωi

Ωi−1

(xi − Φ(ε))2 dε

) 1
2

. (3.9)

The error can thus be easily determined if the inverse of the cumulative distribution Φ of the exact
solution at the final time T is known.
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3.3.2. Error with respect to a discrete steady state. If we know that the considered gradient flow has
a steady state and we are interested in the stabilisation behaviour of the scheme (3.7) we proceed as
follows. Let x∗ := (x∗1, . . . , x

∗
N ) ∈ RNw be a discrete steady state (obtained by running a simulation

for a “large” time) with associated empirical measure µ∗, and let x ∈ RNw be the approximation
of the p-approximated discrete gradient flow solution obtained with the JKO scheme (3.7) at some
final time step M with empirical measure µ := µM . Then we define the error by

e∗d2 = d2(µ∗, µ) =

(
N∑
i=1

wi(x
∗
i − xi)2

) 1
2

, (3.10)

which is nothing but the Euclidean error on the particle space RNw , see (2.6).

3.4. Numerical validation: Diffusions. Before giving any simulation results, let us summarise
practical implementation aspects of the scheme.

• As already justified in Section 3.1, all the following simulations were obtained by implementing
the explicit scheme (3.7).
• The parameter p needed for the iteration of such scheme was chosen to be 10 for every simulation.

This choice is only justified by the fact that it gave sensible results. Note that taking p “large” is
a bad idea. Indeed, if p increases, then the p-approximated discrete gradient flow “approaches”

the discrete one, for which the energy ẼN is not differentiable whenever two neighbouring inter-
particle distances are equal. This may cause numerical instabilities as we would expect the
inter-particle distances at the centre of a symmetric profile (like a Gaussian) to be indeed equal;
this is what we observed for large p under the form of particle oscillations.
• All one-dimensional simulations were initialised in the way described in Section 3.2.2, up to a

slight modification for end particles in Section 4.3. In each case, the initial continuum profile
and the interval Iinit are explicitly given.
• The choice of the time-step size is explicitly given for each simulation.
• All the solution profiles given in the figures for the one-dimensional simulations were drawn by

linking linearly the centres of every constant piece of the function ρN defined in (2.3). Note that
this is only one way of representating the discrete solution and other choices are also possible.

In this section we validate our scheme (3.7) by showing test simulations run on diffusion equations:
the heat and porous medium equations.

3.4.1. The heat equation. The (linear) heat equation ρt = ∆ρ is a continuum gradient flow (1.2)
for H(ρ) = ρ log ρ and V = W = 0. The evolution of the solution starting from the initial data

ρheat
0 (x) =

1√
4πt0

e
− x2

4t0 with t0 = 0.25 (3.11)

is shown in Figure 1a. The exact solution is given, for all t > 0, by

ρ(t, x) =
1√

4π(t+ t0)
e
− x2

4(t+t0) for all x ∈ R,

whose cumulative distribution F and its pseudo-inverse Φ areF (t, x) =
1

2

(
1 + erf

(
x√

4(t+ t0)

))
for all x ∈ R,

Φ(t, ε) =
√

4(t+ t0) erf−1(2ε− 1) for all ε ∈ [0, 1),

where erf is the error function. The error at the final time T can then be found using (3.9) and
some quadrature form to approximate the integrals therein, see Figure 1b. In Figure 1a we chose
Iinit = [−2.5, 2.5], whereas in Figure 1b we chose Iinit = [−4, 4], see Section 3.2.2.
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Figure 1. The heat equation.

From Figure 1b we can see that the quadratic Wasserstein error with respect to the exact solution
ρ evolves linearly with the number of particles on a log-log plot. From this plot, it looks fair to say
that the error of our scheme (3.7) is ed2 = O

(
1
N

)
.

3.4.2. The porous medium equation. The porous medium equation ρt = ∆ρm is a continuum gra-
dient flow (1.2) for H(ρ) = ρm

m−1 ,m > 1, and V = W = 0. The evolution of the solution starting
from the initial data

ρpor
0 (x) =

1

tα0
ψ

(
x

tα0

)
with t0 = 0.25 (3.12)

is shown in Figure 2a. Here α = 1
m+1 , ψ : ξ 7→ (K − κξ2)

1/(m−1)
+ , where the subscript + stands for

the positive part, κ = m−1
2m(m+1) and K determined by the conservation of mass. Indeed, since the

total conserved mass is one, then the constant K can be expressed as

K =

[
Γ
(

1
m−1 + 3

2

)√
κ

/(
Γ
(

m
m−1

)
Γ
(

1
2

))] 2(m−1)
m+1

,

where Γ is the Gamma-function. Then one can verify that, for all t > 0,

ρ(t, x) =
1

(t+ t0)α
ψ

(
x

(t+ t0)α

)
for all x ∈ R,

is a solution, see [37, Section 4.4]. For x ∈
(

0, (t+ t0)α
√

K
κ

]
, the cumulative distribution is

F (t, x) =
1

2
+

∫ x

0

1

(t+ t0)α

(
K − κx2

(t+ t0)2α

) 1
m−1

+

dx =
1

2
+

1

2
I

(
κ

K

x2

(t+ t0)2α
;
1

2
,

m

m− 1

)
,

where I(x; a, b) := B(x;a,b)
B(1;a,b) and B is the incomplete Beta-function, that is,

B(x; a, b) =

∫ x

0
za−1(1− z)b−1 dz for all x ≥ 0 and a, b > 0.
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Similarly, for x ∈
(
−(t+ t0)α

√
K
κ , 0

]
,

F (t, x) =
1

2
− 1

2
I

(
κ

K

x2

(t+ t0)2α
;
1

2
,

m

m− 1

)
.

Also, noticing that

K
1

m−1
+ 1

2κ−
1
2 =

(
B
(

1; 1
2 ,

m
m−1

))−1
,

we get that the pseudo-inverse of F is

Φ(t, ε) =


−(t+ t0)α

√
K

κ

√
I−1

(
1− 2ε;

1

2
,

m

m− 1

)
if 0 ≤ ε < 1

2 ,

(t+ t0)α
√
K

κ

√
I−1

(
2ε− 1;

1

2
,

m

m− 1

)
if 1

2 ≤ ε < 1.

The error can then be found using (3.9) and approximating the integrals therein, see Figure 2b. In

Figure 2 we chose Iinit = [−k0, k0], where k0 := tα0
√
K/κ, see Section 3.2.2.
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Figure 2. The porous medium equation with m = 2.

From the plot in Figure 2b, as for the one in Figure 1b for the heat equation, it looks fair to say
again that the error of our scheme (3.7) is ed2 = O

(
1
N

)
.

3.4.3. The linear Fokker-Planck equation. Let us consider the heat equation with quadratic con-

finement potential, i.e., the heat equation with V (x) = x2

2 . In this case, regardless of the initial
condition, there is a steady state:

ρ∞(x) :=
1√
2π
e−

x2

2 for all x ∈ R.

Figure 3b was obtained from the continuum initial profile ρheat
0 , see (3.11), with Iinit = [−2.5, 2.5]

for Figure 3a and Iinit = [−4, 4] for Figure 3b.
In Figure 3b, we can see that the stabilisation of the scheme towards the discrete steady state

(which we arbitrarily define as being the discrete solution obtained at T = 6) is linear on a semi-log
plot with a slope very close to −2, which seems not to depend on the number of particles N . We
can therefore write the error as e∗d2 = O

(
e−2T

)
, see (3.10).
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Figure 3. The linear Fokker-Planck equation with ∆t = 10−5 – Stabilisation in
time of the scheme (rate of convergence to the discrete steady state).

3.4.4. The nonlinear Fokker-Planck equation. Let us consider the porous medium equation with

quadratic confinement potential, i.e., the porous medium equation with V (x) = x2

2 . In this case,
regardless of the initial profile and since the total mass is one, the steady state is

ρ∞(x) := A(R2 − x2)
1

m−1
+ for all x ∈ R,

where A = (m−1
2m )1/(m−1) and R = (AB(1; 1

2 ,
m
m−1))(1−m)/(m+1). Figure 4b was obtained from the

continuum initial profile ρpor
0 , see (3.12), with Iinit = [−k0, k0], where again k0 := tα0

√
K/κ.
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Figure 4. The nonlinear Fokker-Planck equation with m = 2 and ∆t = 0.1
N2 –

Stabilisation in time of the scheme (rate of convergence to the discrete steady state).

As already noted from Figure 3b, for the heat equation the numerical error can be written
e∗d2 = O

(
e−2T

)
, as it is actually expected from the theory; for the porous medium equation the
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theory says that we should expect e∗d2 = O
(
e−(m+1)T

)
, see [14] and references therein, which is

nicely confirmed numerically by Figure 4b with m = 2.

3.4.5. A two-dimensional test: the heat equation. It is straightforward to generalise the scheme (3.7),
derived in Section 3.1, to higher dimensions whenever the expression (3.2) for the Wasserstein dis-
tance can be used, which is the case when the approximation µn+1 at time step n+ 1 is sufficiently
close to µn, i.e., when the time step ∆t is small enough. Indeed, let us emphasise that the Wasser-
stein distance is computed between empirical measures on points, and not between their approxi-
mations on non-overlapping balls (which are only used to define the diffusion part of the regularised
discrete energy functional, see (2.2)). When the time step is small enough, the Wasserstein distance
approximation (3.2) is exact, since then the splitting of mass between empirical measures possibly
happening in higher-dimensional optimal transport actually does not occur.

We test our scheme for the heat equation in two dimensions. The initial continuum density is

ρ0(x) = 1
4πt0

e−|x|
2/(4t0) with t0 = 0.125, and the particle positions at T = 1 are shown in Figure 5b.

The data were initialised by fixing the particles on a regular grid as in Figure 5a, with weights
being the integrals of the continuum density ρ0 on the Voronoi cells generated from the particles.
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Figure 5. The particles’ positions for the two-dimensional heat equation for N =
100 with ∆t = 10−4.

The averaged quantities along the time evolution, like the second moments
∑N

i=1wi|xi|2 and the

entropy
∑N

i=1wi log wi
|Bi| , seem to be very accurate, as shown in Figure 6, and this accuracy does not

seem to degenerate with time. However, representing the numerical solution in this two-dimensional
test is a delicate issue since gaps between discretisation balls are significant; this is an issue in itself
which we do not deal with here.

4. Aggregation-Diffusion Equations

4.1. The modified Keller-Segel equation. We start by considering a modified one-dimensional
Keller-Segel equation, that is the continuum gradient flow (1.2) with H(ρ) = ρ log ρ and W (x) =
2χ log |x| (and W (0) := 0), where χ > 0 is a parameter quantifying the attraction (see [11, 8]
for well-posedness and qualitative properties, and [10] for the approximation of this equation by a
different particle method).

This model shows a critical behaviour depending only on the chemosensitivity strength χ as the
classical Keller-Segel model in two dimensions, that is, there is a dichotomy of blow-up in finite

15



Time

0 10 20 30 40

S
e
c
o
n

d
 M

o
m

e
n

t

0

20

40

60

80

100

Numerical

Theoretical

(a) Evolution of the second moment,
∫
|x|2ρ.

Time

0 10 20 30 40

E
n

tr
o
p

y

-4

-3.5

-3

-2.5

-2

-1.5

Numerical

Theoretical

(b) Evolution of the entropy,
∫
ρ log ρ.

Figure 6. Accuracy for the two-dimensional heat equation with ∆t = 10−4.

time or global existence which is only determined by χ being larger or less than 1, see [11, 8]. In
case χ < 1 solutions spread in time behaving like self-similar solutions. To get the leading order
profile given by the self-similar solution, a time-space scaling is done for χ < 1, which is equivalent
to impose a quadratic confinement potential on particles, see [8]. The long-time behaviour in this
subcritical case is given by the profile of the self-similar solution.

4.1.1. Theoretical properties. We show that our particle approximation keeps approximately the
criticality of the original Keller-Segel model at the discrete level. We show that there exist two
positive constants χ1 and χ2(N) such that the following holds: if an appropriate confinement
potential V is considered, the discrete and the p-approximated discrete gradient flows (2.7) and
(2.10) for the modified Keller-Segel equation have steady states for χ < χ1; while if V = 0, the
p-approximated discrete gradient flow shows finite-time blow-up for χ > χ2(N). Quite surprisingly,
χ1 happens to be exactly the critical parameter at the continuum level, i.e., χ1 = 1, and χ2(N)
tends to 1 as N →∞ and does not depend on p (but only on N and the chosen weights).

By the term “blow-up” at the discrete level we mean the event of two, or more, particles colliding.
Also note that in the following the term “maximal time of existence” indicates either the first time
when two or more particles of a solution collide, i.e., the first blow-up time, or the first time when
the norm of a solution equals +∞.

First, let us prove that the discrete and p-approximated discrete confined Keller-Segel equations
show no collisions of particles if χ < χ1.

Proposition 4.1. Consider the discrete gradient flow corresponding to the confined Keller-Segel
equation with V coercive and such that the function x 7→ infy∈R(w1V (y) + wNV (x + y)) − log |x|
is coercive. Suppose there exists a solution x to such gradient flow, emanating from an initial
condition x0 ∈ RNw , up to some maximal time of existence, say T ∗ > 0. If

χ < χ1 := 1,

then no particles of x can collide in [0, T ∗); furthermore, the minimal inter-particle distance is
uniformly bounded from below in time by a positive constant.

Proof. The energy ẼN is a Lyapunov functional, i.e.,

ẼN (x(t)) ≤ ẼN (x0) := E0 < +∞ for all t ∈ [0, T ∗), (4.1)
16



see [4, Theorem 1 of Section 3.4]. Fix t ∈ [0, T ∗) and get, by (2.2),

ẼN (x(t)) =

N∑
i=1

wi logwi −
N∑
i=1

wi log ri(t) +

N∑
i=1

wiV (xi(t))

+ χ

N∑
i=1

N∑
j=1
j 6=i

wiwj log |xi(t)− xj(t)|, (4.2)

where ri(t) = min(∆xi(t),∆xi+1(t)). Writing log− x := log x if 0 < x < 1 and log− x := 0 if x ≥ 1,
and using that log is increasing,

N∑
i=1

N∑
j=1
j 6=i

wiwj log |xi(t)− xj(t)| ≥
N∑
i=1

N∑
j=1
j 6=i

wiwj log min
k∈{1,...,N}

k 6=i

|xi(t)− xk(t)|

≥
N∑
i=1

wi(1− wi) log− ri(t) ≥
N∑
i=1

wi log− ri(t).

Hence, writing log+ x := log x if x ≥ 1 and log+ x := 0 if 0 ≤ x < 1, and by (4.2),

ẼN (x(t)) ≥
N∑
i=1

wi logwi +

N∑
i=1

wiV (xi(t)) + (χ− 1)

N∑
i=1

wi log− ri(t)−
N∑
i=1

wi log+ ri(t)

≥
N∑
i=1

wi logwi +
N−1∑
i=2

wiV (xi(t)) + w1V (x1(t)) + wNV (xN (t))

+ (χ− 1)
N∑
i=1

wi log− ri(t)− log+(xN (t)− x1(t)),

using that − log+ ri(t) ≥ − log+(xN (t)− x1(t)) for all i ∈ {1, . . . , N}. From the assumptions on V
we know that V is bounded from below and also that w1V (x1(t))+wNV (xN (t))−log+(xN (t)−x1(t))
is bounded from below uniformly in time. Therefore there exists a constant C ∈ R, independent of
t, such that

E0 ≥ ẼN (x(t)) ≥ (χ− 1)
N∑
i=1

wi log− ri(t) + C, (4.3)

using (4.1). We see that if χ < χ1 = 1, the minimal inter-particle distances ri(t) cannot get

arbitrarily small, or the energy ẼN (x(t)) gets larger than its initial value E0, which violates the
fact that the system is a gradient flow. Hence the result. �

Remark 4.2. The proof above is given only for the discrete case; however, note that it can be easily
adapted to the p-approximated one, if p ≥ 1, by Proposition 2.7(5) with s = 2, and without the
need to change the constant χ1.

We can now show the global existence in time and the existence of steady states for the discrete
and p-approximated discrete confined Keller-Segel equations.

Proposition 4.3. Consider the discrete gradient flow corresponding to the confined Keller-Segel
equation with V satisfying the same hypotheses as in Proposition 4.1. If χ < χ1, then any solution
to this gradient flow, if it exists, exists globally in time and the gradient flow has a steady state.
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Proof. Let χ < χ1 = 1. Suppose there exists such a solution x, emanating from an initial condition
x0 ∈ RNw , defined on [0, T ∗), see Proposition 4.1, and assume that xN (t)− x1(t)→ +∞ as t→ T ∗.
For all t ∈ [0, T ∗), the proof of Proposition 4.1 implies that there exists a t-independent constant
C1 ∈ R such that

E0 ≥ ẼN (x(t)) ≥ (χ− 1)

N∑
i=1

wi log− ri(t) + f(xN (t)− x1(t)) + C1 ≥ f(xN (t)− x1(t)) + C1,

since (χ− 1)
∑N

i=1wi log− ri(t) ≥ 0, and where f(xN (t)− x1(t)) := infy∈R(w1V (y) +wNV (xN (t)−
x1(t) + y))− log+(xN (t)− x1(t)). By the growth assumption at infinity on V , we have f(xN (t)−
x1(t)) → +∞ as t → T ∗, which implies that the inequality above is violated for a time t close
enough to T ∗. Therefore xN (t) − x1(t) cannot diverge as t → T ∗, and thus there exists C2 ∈ R,
uniform in t, such that log+(xN (t)− x1(t)) ≤ C2 for all t ∈ [0, T ∗). Therefore,

E0 ≥ ẼN (x(t)) ≥ w1V (x1(t)) + wNV (xN (t))− C2 + C1,

which, by coercivity of V shows that x1(t) and xN (t) cannot diverge. Thus, there exists some
constant ` > 0, independent of time, such that {x1(t), . . . , xN (t)} ⊂ B(0, `) for all t ∈ [0, T ∗). This,
together with the no-collision result in Proposition 4.1, shows that the maximal time of existence
of the discrete gradient flow solution is T ∗ =∞.

Finally, the functional ẼN is lower semi-continous and bounded from below on any sublevel set

of ẼN which are compact due to (4.3). Indeed, the previous argument shows that xi ∈ B(0, `) for

all x ∈ RNw such that E0 ≥ ẼN (x). Moreover, the same argument leading to (4.3) implies that

E0 ≥ ẼN (x) ≥ C,

for all x ∈ RNw such that E0 ≥ ẼN (x), since χ < 1. Therefore, by a direct method of calculus of

variations, we get that ẼN has a global minimiser, which ends the proof. �

Remark 4.4. Similarly to Proposition 4.3 the proof above is given only for the discrete case, but is
easily adaptable to the p-approximated one if p ≥ 1, by Proposition 2.7(5) with s = 2.

Remark 4.5. The assumptions on V of Propositions 4.1 and 4.3 are in particular satisfied by

V (x) = xk

k for any k ≥ 1. Propositions 4.1 and 4.3 are also true for any W bounded from below
and satisfying Hypothesis 1, with no required constraint on χ; in particular this is the case for the

linear Fokker-Planck equation, that is with V (x) = x2

2 and W = 0.

Let us now turn to the supercritical case. In the unconfined continuum modified Keller-Segel
equation, it is known that solutions blow up in finite time if χ > 1. The proof of non-existence
of global-in-time solutions is obtained by computing the evolution of the second moment M2(t) of
solutions ρ(t) at any time t > 0. Then, a formal computation leads to

dM2

dt
(t) =

d

dt

∫
R
x2 dρ(t, x) = 2(1− χ). (4.4)

Therefore the evolution of the second moment is linear in time with slope 2(1 − χ). This slope is
negative if χ > 1, which implies that M2(t) becomes zero in finite time leading to concentration
of mass in finite time and contradiction with the assumption of global existence. We want here
to show that our p-approximated discrete gradient flow (2.10) preserves this finite-time blow-up
property for some numerical critical parameter χ2(N), at least when all particles have same weight.
Recall that, at the discrete level, we define blow-up as being the event of two particles colliding.
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Proposition 4.6. Let p > 0 and consider the p-approximated discrete unconfined Keller-Segel
gradient flow with wi = 1/N for all i ∈ {1, . . . , N}, on the whole time line [0,∞). All solutions
blow up in finite time if χ is greater than

χ2(N) := 1 +
1

N − 1
.

Proof. Suppose that there exists x, a p-approximated discrete Keller-Segel gradient flow solution
emanating from an initial condition x0 ∈ RNw , defined on some maximal interval of existence [0, T ∗).
Let us compute the evolution of the second moment of µN , the empirical measure associated to x,
at any t ∈ [0, T ∗).

dM2

dt
(t) =

d

dt

∫
R
x2 dµN (t, x) =

d

dt

1

N

N∑
i=1

x2
i (t) =

2

N

N∑
i=1

xi(t)
dxi
dt

(t). (4.5)

In the following we drop the dependencies on time for the sake of simplicity.
Suppose T ∗ = ∞. We want to find a contradiction if χ > χ2(N) by computing explicitly the

evolution of the second moment in (4.5). Write ∆j
i := 1 + (∆xj/∆xi)

p for all i, j ∈ {1, . . . , N} with

i 6= j, recalling the convention ∆x1 = ∆xN+1 = +∞ and setting ∆1
0 = ∆N+1

N+2 = +∞. By (2.10),

N∑
i=1

xi
dxi
dt

=
N∑
i=1

((
xi/∆xi
∆i
i−1

+
xi/∆xi
∆i
i+1

)
−

(
xi/∆xi+1

∆i+1
i

+
xi/∆xi+1

∆i+1
i+2

))
︸ ︷︷ ︸

=:A1

− 2χ

N

N∑
i=1

xi

N∑
j=1
j 6=i

W̄ ′(xi − xj)

︸ ︷︷ ︸
=:A2

,

where W̄ := log | · |. First, compute A1 by appropriately rearranging the sum terms,

A1 =
N−2∑
i=3

((
xi/∆xi
∆i
i−1

+
xi/∆xi
∆i
i+1

)
−

(
xi/∆xi+1

∆i+1
i

+
xi/∆xi+1

∆i+1
i+2

))
+

(
1 +

1

∆2
3

)

+

(
1 +

1

∆N
N−1

)
−
(
x2/∆x3

∆3
2

+
x2/∆x3

∆3
4

)
+

(
xN−1/∆xN−1

∆N−1
N

+
xN−1/∆xN−1

∆N−1
N−2

)
.

Also,

N−2∑
i=3

((
xi/∆xi
∆i
i−1

+
xi/∆xi
∆i
i+1

)
−

(
xi/∆xi+1

∆i+1
i

+
xi/∆xi+1

∆i+1
i+2

))

=

(
x3/∆x3

∆3
4

+
x3/∆x3

∆3
2

)
−

(
xN−1/∆xN−1

∆N−1
N−2

+
xN−1/∆xN−1

∆N−1
N

)
+

N−2∑
i=3

(
1

∆i+1
i

+
1

∆i+1
i+2

)
.

Hence, by combining the last two computations, we get

A1 =
N−2∑
i=3

(
1

∆i+1
i

+
1

∆i+1
i+2

)
+

(
1

∆3
4

+
1

∆3
2

)
+

(
1 +

1

∆2
3

)
+

(
1 +

1

∆N
N−1

)

=

N−1∑
i=2

(
1

∆i+1
i

+
1

∆i
i+1

)
+ 2 =

N−1∑
i=2

1 + 2 = N.
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Then, compute A2 by using the anti-symmetry of W̄ ′(x) = 1
x ,

A2 = (x1 − x2)W̄ ′(x1 − x2) + (x1 − x3)W̄ ′(x1 − x3) + · · ·+ (x1 − xN )W̄ ′(x1 − xN )

+ (x2 − x3)W̄ ′(x2 − x3) + (x2 − x4)W̄ ′(x2 − x4) + · · ·+ (x2 − xN )W̄ ′(x2 − xN ) + . . .

+ (xN−1 − xN )W̄ ′(xN−1 − xN ) = (N − 1) + (N − 2) + · · ·+ 1 =
∑N−1

i=1 (N − i) = (N−1)N
2 .

Therefore, for all t ∈ [0, T ∗) = [0,∞),

dM2

dt
(t) =

2

N

(
N − 2χ

N

(N − 1)N

2

)
= 2

(
1− χ

(
1− 1

N

))
= 2

(
1− 1

N

)
(χ2(N)− χ). (4.6)

Hence the evolution of the second moment is linear with a negative slope, since by assumption
χ > χ2(N), which clearly contradicts the fact that the maximal time of existence T ∗ = ∞, and
therefore the solution x exists only up to a finite time: T ∗ < ∞. At exactly that time, only two
things may happen: either the norm of the solution equals +∞, i.e., |x|w = +∞, or two or more
particles collide. The first option is not plausible since trivially the second moment of an empirical
measure is finite at all times. We are thus only left with the collision of particles, that is x has to
blow up in finite time. �

4.1.2. Simulations. We give here a few simulations for the modified Keller-Segel equation showing
various blow-up characteristics when V = 0. As we want to capture the blow-up we used an
adaptive time-step size as follows. For every time step n ∈ {0, . . . ,M −1}, suppose we have a time-
step size ∆nt, and compute the velocity vni of each particle xni , 1 ≤ i ≤ N . Then fix a tolerance
δ = 0.25, and define

δi =

∆nt if ∆nt ≤
δminp(∆xni ,∆x

n
i+1)

|vni |
,

δminp(∆xni ,∆x
n
i+1)

|vni |
otherwise.

Finally, renew ∆nt := mini∈{1,...,N} δi, compute the positions xn+1
i with the new ∆nt, and start

over until ∆nt > 10−7; when ∆nt ≤ 10−7 stop the simulation. We took ∆0t = 10−5 as the very
initial time-step size. In Figures 7, 8 and 9 the simulations shown stopped due to this adaptive
time-step procedure.

Figures 7 and 8 show the results of simulations with initial continuum profile ρheat
0 , with Iinit =

[−2.5, 2.5]. From Figure 7 one can see that the scheme we used captures nicely the formation of
the blow-up for a supercritical parameter χ.

Figure 8a shows that the evolution of the second moment is linear for some range of time with
a slope that deviates slightly from the theoretical one, as expected from Proposition 4.6 and its
proof. Actually, by comparing (4.4) and (4.6), it can be seen that this slope deviation decreases as
N increases. For larger times, as the blow-up is approached and the time step refined, the numerical
slope deviates even more from the theoretical one.

Figure 8b shows the trajectories of the particles up to the first blow-up time, defined numerically
as the first time when the distance between two particles gets smaller than some chosen number
dmin, or equivalently when the adaptive time-step size ∆nt gets larger than 10−7, see above. A
possible procedure to continue the evolution after the first blow-up time is merging particles into a
new heavier one whenever the distance between these particles gets less than a certain threshold,
say proportional to dmin; the weight of the new particle is then chosen to be the sum of the merged
particles, and the position the barycentre of the merged particles. This procedure might give an idea
of how the particles behave after the first blow-up, but we found that it is not very accurate since
the post-collision trajectories strongly depended on the choice of the threshold, which is arbitrary.
We found that the analysis of the post-collision behaviour is very delicate without having clear
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(b) Blow-up formation.

Figure 7. The modified Keller-Segel equation with χ = 1.5 for N = 50.
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(a) Evolution of the second moment for N = 100.
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(b) Particle trajectories up to first numerical blow-up
for N = 50 (not all particles are represented).

Figure 8. The blow-up of the modified Keller-Segel equation with χ = 1.5.

criteria for deciding when to merge particles and how many simultaneously. We thus leave this
issue for further analysis and future work.

Figure 9 shows the result with a continuum two-bump initial profile, with Iinit = [−4.5, 4.5]:

ρ0(x) =
1

2
√

4πt0
e
− (x+2)2

4t0 +
1

2
√

4πt0
e
− (x−2)2

4t0 with t0 = 0.25.

Figure 9 shows the possible formation of several Dirac masses, according to how much attraction
is involved in the system and to how many bumps are present at the beginning. It seems like
the more attraction, the more Dirac masses can form. Note that the two peaks in Figure 9b are
actually of same height despite a displaying artifact; also, even if not clear from Figure 9b, the two
peaks get slightly closer to each other with time, but then blow up before merging.
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(b) Evolution with χ = 3 for N = 100.

Figure 9. Blow-up formation for the modified Keller-Segel equation with two initial
Gaussian bumps.

4.2. The modified Keller-Segel equation with nonlinear diffusion. Let us now consider
the modified one-dimensional Keller-Segel equation with nonlinear diffusion, i.e., the continuum
gradient flow (1.2) with H(ρ) = ρm

m−1 , m > 1, V = 0 and W (x) = 2χ log |x| (and W (0) := 0). The

initial continuum profile we used here is ρheat
0 , with Iinit = [−2.5, 2.5].
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Figure 10. The modified nonlinear Keller-Segel equation with χ = 1.4 for different
choices of m, for N = 50 at T = 4 with ∆t = 10−5.

Each curve in Figure 10 is a good approximation of a steady state for the modified Keller-Segel
equation with nonlinear diffusion. For each m, the steady state is different; as m tends to 1 the
steady state “squeezes” and looks as if it is approaching a Dirac mass, which is the “steady state”
of the modified Keller-Segel equation with linear diffusion studied in Section 4.1.

4.3. A compactly supported potential with nonlinear diffusion. We consider here the con-
tinuum gradient flow when H(ρ) = ρm

m−1 , m > 1, V = 0 and W (x) = −cmax(1−|x|, 0)+c, c > 0, is
a compactly supported interaction potential. In Figure 11 the considered continuum initial profile
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is a uniform distribution on the interval [−2, 2]. Here Iinit = [−2, 2] and the end particles were set
to have weights equal to 0.001.
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Figure 11. Compactly supported potential W (x) = −cmax(1 − |x|, 0) + c with
nonlinear diffusion with c = 8 and m = 3, for N = 80 with ∆t = 10−5.

Figure 11a shows the formation of a metastable state made of two bumps, while Figure 11b shows
how this metastable state breaks into a single-bumped steady state. This behaviour, for exactly
this interaction potential (up to a multiplicative constant, c), was already noted in [12, Example
3] when using a finite-volume scheme on gradient flows. The bumps are actually supposed to be
disconnected since no particles were found numerically in-between, although this does not seem to
be the case in the plots. This is because the particle of each bump which is closest to the origin
is not located at the actual boundary of the exact solution’s corresponding bump, and so the line
connecting the two bumps does not show 0 density but more. Visually, a better separation of the
bumps can be obtained by increasing the number of particles in the simulation.

Appendix A. Convergence of the p-approximated gradient flow in one dimension

In this appendix we give the proof of the convergence of the p-approximated gradient flow (2.10)
to the discrete one (2.7) in one dimension, see Section 2.3. Before doing so we need to recall some
notions and results from monotone operator theory.

If A : {y ∈ X | Ay 6= ∅} ⊂ X → X∗, where X is a Banach space and X∗ its dual, is a maximal
monotone operator, then the graph of A is given by graph(A) = {(x,Ax) | x ∈ {y ∈ X | Ay 6= ∅}}.

Definition A.1 (Graph convergence). Let X be a reflexive Banach space, (Ak)k∈N a sequence of
maximal monotone operators from X to X∗, and A a maximal monotone operator from X to X∗.
We say that (Ak)k∈N graph-converges to A if, for every (x, y) ∈ graph(A), there exists a sequence
((xk, yk))k∈N with (xk, yk) ∈ graph(Ak) for all k ∈ N such that xk → x strongly in X and yk → y
strongly in X∗ as k →∞.

Remark A.2. One can check that if φ is a lower semi-continuous, convex function from a reflexive
Banach space to R, then ∂φ is a maximal monotone operator, see [3, Section 3.7.1].

For the sake of completeness we give the defintion of Γ-convergence.
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Definition A.3 (Γ-convergence). Let (Xk)k∈N be a sequence of metric spaces endowed with a
distance d and (φk)k∈N be a sequence of functionals φk : Xk → R for all k ∈ N. We say that
(φk)k∈N Γ-converges to φ if the following two conditions are met for all u ∈ X:

(i) (“liminf” condition) φ(u) ≤ lim infk→∞ φk(uk) for all sequences (uk)k∈N with uk ∈ Xk for
all k ∈ N and d(uk, u)→ 0 as k →∞,

(ii) (“limsup” condition) lim supk→∞ φk(uk) ≤ φ(u) for some sequence (uk)k∈N with uk ∈ Xk

for all k ∈ N and d(uk, u)→ 0 as k →∞.

Theorem A.4 connects the notion of Γ-convergence to that of graph-convergence in finite di-
mension. It is a consequence of [3, Theorem 3.66] and the fact that Γ-convergence is equivalent to
Mosco convergence in finite dimension. Indeed, in a general dimensional setting, Mosco convergence
means that the “liminf” condition of Γ-convergence holds for the weak topology and the “limsup”
condition holds for the strong topology, see [27, Definition 2.2] and [3, Definition 3.17].

Theorem A.4. Let X be a finite-dimensional Banach space. Let (φk)k∈N be a sequence of lower
semi-continuous, convex functions with φk : X → R for all k ∈ N, and φ : X → R a lower semi-
continuous, convex function. If (φk)k∈N Γ-converges to φ, then (∂φk)k∈N graph-converges to ∂φ.

We can now give the general convergence and regularity result, whose proof can be deduced by
[3, Theorem 3.74], [9, Theorem 3.1] and [4, Theorem 1, Section 3.2].

Theorem A.5. Let X be a Hilbert space. Let (φk)k∈N be a sequence of lower semi-continuous,
convex functions with φk : X → R for all k ∈ N and φ : X → R be a lower semi-continuous,
convex function. Suppose that (∂φk)k∈N graph-converges to ∂φ. Consider the following differential
inclusions, for all k ∈ N.

u′k(t) ∈ −∂φk(uk(t)), uk(0) = u0
k for almost every t ∈ (0, T ],

and
u′(t) ∈ −∂φ(u(t)), u(0) = u0 for almost every t ∈ (0, T ],

where u, uk : [0, T ]→ X are the unknown curves. Unique solutions u and uk exist and

(1) uk and u are continuous on [0, T ],

(2) u′k and u′ are right-continuous on [0, T ].

Moreover, assume that u0
k → u0 strongly and that in this case, φk(u

0
k)→ φ(u0) as k →∞. Then

(3) uk → u uniformly on [0, T ] as k →∞,

(4)
∫ T

0 t |u′k(t)− u′(t)|
2 dt→ 0 as k →∞,

(5) u′k → u′ strongly in L2([0, T ], X) as k →∞ (so u′k(t)→ u′(t) for almost every t ∈ [0, T ]),

(6) φk(uk)→ φ(u) uniformly on [0, T ] as k →∞.

It is not hard to see that ẼpN , see (2.11), Γ-converges to ẼN , see (2.4), as p→∞. Furthermore,

it is easily verified that ẼpN (x0) → ẼN (x0) as p → ∞, where x0 ∈ RNw is taken here to be the
initial condition for both the discrete and p-approximated discrete gradient flows (2.7) and (2.10).
Therefore, in order to use Theorems A.4 and A.5 combined, we are only left with checking that

ẼpN and ẼN are lower semi-continuous and convex. The first condition is trivial to verify based on
the assumptions on H,V and W , whereas the convexity condition is shown below whenever V and

W are assumed to be convex. Actually the following proposition shows the convexity of ẼN only,

but also holds for ẼpN since the proof is easily adapted from the classical minimum function to the
p-approximated one.

Proposition A.6. Let d = 1 and the confinement and interaction potentials V and W be convex.

Then the discrete energy ẼN defined in (2.4) is convex.
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Proof. Let λ ∈ [0, 1] and x,y ∈ RNw . Then, by the facts that min is concave on R2 and h is
non-increasing and convex on (0,∞), we know that h ◦ min is convex on (0,∞)2, where ◦ is the
composition operator. Define, for all a, b ∈ R, [a, b]λ = λa+ (1−λ)b, and ri(x) = min(∆xi,∆xi+1)
and ri(y) = min(∆yi,∆yi+1). Therefore, since V and W are convex,

ẼN ([x,y]λ) =
N∑
i=1

wih

(
1

wi
min([∆xi,∆yi]λ, [∆xi+1,∆yi+1]λ)

)

+

N∑
i=1

wiV ([xi, yi]λ) +
1

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW ([xi − xj , yi − yj ]λ)

≤ λ
N∑
i=1

wih

(
ri(x)

wi

)
+ (1− λ)

N∑
i=1

wih

(
ri(y)

wi

)
+ λ

N∑
i=1

wiV (xi) + (1− λ)

N∑
i=1

wiV (yi)

+
λ

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW (xi − xj) +
1− λ

2

N∑
i=1

N∑
j=1
j 6=i

wiwjW (yi − yj)

= λẼN (x) + (1− λ)ẼN (y).

Hence convexity of ẼN . �

Theorem A.4 now tells us that ∂wẼ
p
N graph-converges to ∂wẼN as p → ∞, and Theorem A.5

tells us in which sense the p-approximated discrete gradient flow converges to the discrete one and
also gives us some regularity on the discrete and p-approximated discrete gradient flow solutions.
The use of the p-approximated gradient flow (2.10) is therefore justified to approximate (2.7) (at
least in the case when V and W are convex and d = 1).
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