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Abstract

We consider a one dimensional transport model with nonlocal velocity given by the Hilbert transform
and develop a global well-posedness theory of probability measure solutions. Both the viscous and non-
viscous cases are analyzed. Both in original and in self-similar variables, we express the corresponding
equations as gradient flows with respect to a free energy functional including a singular logarithmic
interaction potential. Existence, uniqueness, self-similar asymptotic behavior and inviscid limit of solutions
are obtained in the space P2(R) of probability measures with finite second moments, without any smallness
condition. Our results are based on the abstract gradient flow theory developed by Ambrosio et al.
(2005) [2]. An important byproduct of our results is that there is a unique, up to invariance and translations,
global in time self-similar solution with initial data in P2(R), which was already obtained by Deslippe et al.
(2004) [17] and Biler et al. (2010) [6] by different methods. Moreover, this self-similar solution attracts all
the dynamics in self-similar variables. The crucial monotonicity property of the transport between measures
in one dimension allows to show that the singular logarithmic potential energy is displacement convex. We
also extend the results to gradient flow equations with negative power-law locally integrable interaction
potentials.
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1. Introduction

In this work, we are interested in developing a well-posedness theory of measure solutions to
the equation

ut + (H(u)u)x = 0
u(x, 0) = u0(x),

(1.1)

with general nonnegative initial Borel measures u0. Here, the term H(u) denotes the classical
Hilbert transform

H(u) =
1
π

P.V .


R

u(z)

x − z
dz.

Since the equation is of transport nature and in divergence form, we expect sign preservation and
mass conservation. Therefore, we will restrict our attention to probability measures as initial data.
This equation is nothing else than a 1D-dimensional continuity equation in which the velocity
field is given by the Hilbert transform and it has been proposed as a simplified model in fluid
mechanics [13] and in dislocation dynamics [6] as we will discuss in the next subsection. This
equation can be formally considered as a particular example of the theory of gradient flows in
the space of probability measures [2] as it will be further elaborated in Section 1.2.

The main aim of this work is to show that unique measure solutions of gradient-flow type can
be constructed for the problem

ut + (H(u)u)x = κuxx
u(x, 0) = u0(x),

(1.2)

with κ ≥ 0 and u0 ∈ P2(R) the set of probability measures on the real line with finite second
moments. Moreover, the solutions will continuously depend on both the initial data u0 and the
viscosity parameter κ ≥ 0. The main tools of this construction are the variational schemes based
on optimal transportation theory originated for the seminal work [24].

Moreover, we will be able to characterize the large time behavior of the solutions. In fact, we
show that suitable scaled equations related to (1.1) and (1.2) have unique stationary solutions
fixed by the normalization of the mass. Furthermore, we are able to show that the solutions
constructed converge for large times to these stationary solutions exponentially fast in some
transport distance. These stationary solutions correspond to self-similar solutions for the original
equations.

This manuscript is organized as follows. In the next two subsections, we recall the main results
already obtained in the literature and the origin of these models. On the other hand, we introduce
some basic notations and definitions about optimal mass transportation theory essential to our
construction. Section 2 is devoted to introduce self-similar variables and rewrite our problem in
the form of a gradient flow in the space of probability measures of a free energy functional. Key
properties of the functionals involved are shown in Sections 2.1 and 2.2. Finally, we state and
prove our existence, asymptotic behavior and inviscid limit results in Section 3.

1.1. Motivation: fluid and fracture mechanics

One of the motivations to analyze these equations arose from the mathematical fluid
mechanics literature. In fact, it appears as a simplified one dimensional model [3] mimicking
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the structure of the 3D-Navier–Stokes equations and the 2D-quasi-geostrophic equations [13]:
ut + (θ · ∇)u = 0

θ = ∇
⊥φ, u = −(−∆)

1
2φ

u(x, 0) = u0(x),
(1.3)

where ∇
⊥

= (−∂2, ∂1) and u(x, t) represents the air temperature. Since div(R⊥u) = 0, rewriting
the system (1.3) in terms of the Riesz transform given by

R j (u)(x, t) =
1

2π
P.V .


R2

(x j − y j )

|x − y|3
u(y, t) dy

the result is
ut + div


R⊥u


u


= 0

u(x, 0) = u0(x).
(1.4)

Considering u(x, t) with (x, t) ∈ [0,∞) × R and replacing the Riesz transform in (1.4) by
the Hilbert transform in one dimension leads to (1.1) or (1.2) with diffusion; see [14] for
previous related works and simplified models. Mathematical fluid mechanics arguments have
been used to analyze existence and uniqueness, finite time blow-up of smooth solutions, and
other issues; see [27,13,15,16,18,25] and the references therein related to these equations and
other nonconservative variants.

More precisely in our case, sign-changing periodic C1-solutions of (1.1) blow up in finite
time, in the sense that its C1-norm diverges in finite time as shown in [13]. On the other hand,
global existence and uniqueness of smooth solutions for the Cauchy problem on the whole real
line is proved in [12] for strictly positive initial data for (1.1) and for general nonnegative initial
data for (1.2). The same authors show that for nonnegative touching-down initial data the Cauchy
problem for (1.1) is locally well-posed for smooth solutions and that solutions do blow up in finite
time in the C1 norm.

Apart from the structural similarities, Eqs. (1.4) and (1.1) have different properties. For
instance, while the first one has a Hamiltonian structure, the second one being one dimensional
can be considered rather as a gradient flow as we will discuss in the next subsection.

The other source of motivation to analyze Eqs. (1.1) and (1.2) comes from dislocation
dynamics in crystals [20–22,17]. Here, the unknown u represents the number density of
fractures per unit length in the material. The existence of explicit self-similar solutions and
the convergence towards them was studied in [17,6] showing that nonnegative solutions play
an important role in the large time asymptotics of (1.2) and related problems. In fact, we will
give a characterization of the self-similar solution as the minimizer of a free energy functional
intimately related to its gradient flow structure. In this way, we will show that the solution does
really converge in suitable scaling and in transport distances to the self-similar profile.

1.2. Gradient flows for probability measures

Let us remind some basic facts about optimal mass transport, which will be useful to our study
of solutions of the Cauchy problem (1.2). For more details, we refer the reader to [30,2]. Let us
denote by P(Rd) the space of probability measures on Rd . We start reminding the definition of
push forward of a measure ρ ∈ P(Rd).
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Definition 1.1. Let ρ be a probability measure on Rd and let T : Rd
→ R be a Borel map. The

push forward T♯ρ ∈ P(Rd) of ρ through T is defined by T♯ρ(I ) := ρ(T −1(I )) for any Borel
subset I ⊂ R. The measures ρ and T♯ρ satisfy

Rd
f (T (x))dρ(x) =


Rd

f (y)dT♯ρ(y),

for every bounded or positive continuous function f .

Let ρ,µ ∈ P(Rd) and Tµρ : Rd
→ Rd such that Tµρ♯ρ = µ. The map Tµρ is called a

transport map between the probability measure ρ and µ. We also recall the notion of transport
plan between two probability measures.

Definition 1.2. Given two measures ρ and µ of P(Rd) the set of transport plans between them
is defined by

Γ (ρ, µ) :=


γ ∈ P(R × R) : π1

♯ γ = ρ, π2
♯ γ = µ


,

where π i
: Rd

× Rd
→ Rd , i = 1, 2 are the projections onto the first and second coordinates:

π1(x, y) = x, π2(x, y) = y. In other words, transport plans are those having marginals ρ and
µ.

Our aim is to study solutions of the Cauchy problem (1.1) and (1.2) in an appropriate subspace
of P(R) endowed with a transport distance, the so-called euclidean Wasserstein distance.
Consider the set

P2(Rd) =


ρ ∈ P(Rd) :


Rd

|x |
2 dρ(x) < ∞


.

The euclidean Wasserstein distance is defined on P2(Rd) as the following.

Definition 1.3. For any probability measure ρ,µ ∈ P2(Rd) the euclidean Wasserstein distance
between them is defined by

d2(ρ, µ) := min


Rd×Rd

|y − x |
2dγ (x, y)

 1
2

: γ ∈ Γ (ρ, µ)


.

We denote by Γ0(ρ, µ) the set of optimal plans, i.e., the subset of Γ (ρ, µ)where the minimum
is attained, i.e.,

Γ0(ρ, µ) =


γ ∈ Γ (ρ, µ) :


Rd×Rd

|y − x |
2dγ (x, y) = d2

2 (ρ, µ)


.

The space P2(Rd) endowed with d2 becomes a complete metric space. The convergence in
d2 is equivalent to weak-∗ convergence as measures together with convergence of the second
moments; see [30, Theorem 7.12]. We will denote by P ac

2 (R
d) the subset of probability

measures with absolutely continuous densities with respect to Lebesgue measure and finite
second moments. It is well-known that for any ρ,µ ∈ P ac

2 (R
d), the minimum in the definition of

d2 is achieved by a plan defined by an optimal map, i.e., by a plan defined by γ = (1Rd ×Tµρ )#ρ.
Let us remark that the Wasserstein distance in one dimension can be easily characterized

since the optimal transport map, if exists, in one dimension is always a monotone nondecreasing
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function. In fact, as shown in [30, Theorem 2.18], the optimal plan in one dimension is
independent of the cost and given in terms of the distribution functions associated to the
probability measures and their pseudo-inverses. In fact, one can show the following lemma.

Lemma 1.4. Given ρ,µ ∈ P ac
2 (R), the optimal transport map Tµρ in R for d2 between them is

essentially increasing, i.e., Tµρ is increasing except in a ρ-null set.

Proof. Indeed, we can use the distribution function Fρ(x) := ρ((−∞, x)), and define its pseudo-
inverse of Fρ by the formula

F−1
ρ (s) := sup


x ∈ R : Fρ(x) ≤ s


, for s ∈ [0, 1].

In one dimension, the optimal map for d2, and for general costs, is given by Tµρ = F−1
µ ◦ Fρ

satisfying obviously Tµρ (s1) ≤ Tµρ (s2) for all 0 ≤ s1 ≤ s2 ≤ 1. Thus, the optimal transport
map Tµρ is nondecreasing. Since ρ ∈ P ac(R), Tµρ is an injective function except in a ρ-null set
(see [2, Remark 6.2.11]). Therefore, it follows at once that Tµρ is increasing except in a ρ-null
set, i.e., it is essentially increasing. �

Following the seminal ideas for the porous medium equation in [28] and the linear
Fokker–Planck equation in [24], a theory of gradient flows in the space of probability measures
(P2(Rd), d2) has been fruitfully applied to general class of equations in the last decade [2,9,10,1].
These equations are continuity equations where the velocity field is given by the gradient of the
variational derivative of an energy functional. More precisely, they are of the form

∂ρ

∂t
= div


ρ∇

δE
δρ


, in (0,+∞)× Rd , (1.5)

where the free energy functional E is given by

E [ρ] :=


Rd

U (ρ(x)) dx +


Rd
ρ(x) V (x) dx

+
1
2


Rd×Rd

W (x − y) ρ(x) ρ(y) dx dy (1.6)

under the basic assumptions U : R+
→ R is a density of internal energy, V : Rd

→ R is a
confinement potential and W : Rd

→ R is a symmetric interaction potential. The internal energy
U should satisfy the following dilation condition, introduced in [26]

λ −→ λdU (λ−d) is convex non-increasing on R+. (1.7)

The most classical case of application, as it is for our case, is U (s) = s log s, which identifies the
internal energy with Boltzmann’s entropy.

We can check that, at least formally, our equations of interest (1.1) and (1.2) are of the
form (1.5) in d = 1 defined by the functional (1.6) with the choices: U = V = 0, and
W (x) = −

1
π

log |x |; U (s) = κ s log s, V = 0, and W (x) = −
1
π

log |x |, respectively. However,
the theory developed in [2] is not directly applicable to (1.1) and (1.2) for two reasons: this theory
uses a convexity property of the functional E that we will discuss next and the potentials V and
W have to be smooth functions while we deal with the singular potential −

1
π

log |x | with an
apriori unclear convexity properties.

The needed notion of convexity for functionals on measures was introduced in [26] and
named displacement convexity. This notion provides functionals of the form (1.6) with a natural
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convexity structure allowing to show that the variational scheme introduced in [24] is convergent
under smoothness and convexity assumptions of the confining and interaction potentials V,W
and the convexity property of the internal energy in (1.7); see [2] for precise statements. Let us
define

W̃ (x) =


−

1
π

log |x | for x ≠ 0

+∞ at x = 0.
(1.8)

In our case, we will show that the interaction functional E with U = V = 0 and W = W̃ given
by (1.8) in one dimension is indeed displacement convex. The intuition behind this is that W̃ (x)
is clearly convex for x ≥ 0 with the definition above and the optimal map between two measures
is essentially increasing as shown in Lemma 1.4. Therefore, when transporting measures we only
“see” the convex part of W̃ (x).

On the other hand, this convexity will allow us to avoid the singularity too. In plain words,
we will show that this interaction potential is extremely repulsive in one dimension producing
that any initial measure is instantaneously regularized to an absolutely continuous measure
for all t > 0. This behavior is very interesting compared to fully attractive potentials. In
fact, Eq. (1.5) has been studied in d = 1 with the displacement concave attractive potential
W (x) =

1
π

log |x |,U (s) = κ s log s and V = 0, the so-called one dimensional version of
the Patlak–Keller–Segel model, in [7]. There, it is shown that the variational scheme in [24]
converges to a weak solution of the equation in case the diffusion κ does not go below certain
critical value. Let us point out that nonpositive solutions to (1.2) correspond easily to nonnegative
solutions to this 1D-PKS model via reflection; see [12].

Other related works for fully attractive potentials may lead to finite time blow-up, in the sense
of finite time aggregation to Delta Dirac points; see [4,8]. For fully repulsive potentials like the
one we consider here, we are aware about the recent work in [5] dealing with the asymptotic
behavior of L1

∩ L∞-solutions in dimensions d ≥ 2 for the Newtonian potential from a more
fluid mechanics perspective.

2. Free energy properties

With the purpose in mind to give a well-posedness theory for probability measure solutions to
(1.1) and (1.2), we should keep in mind that we are also interested in the asymptotic behavior of
the solutions. For both reasons, it is obvious that a deep preliminary study of the minimization
and convexity properties of the free energy functionals involved has to be performed.

In order to find self-similar solutions to (1.2), we will need to rescale variables, as usually done
in nonlinear diffusion equations [11] to translate possible self-similar solutions onto stationary
solutions. The rescaled equations can also be considered gradient flows of certain free energy
functionals which are uniformly 1-convex functionals in the sense of displacement convexity.
These are the objectives of this section.

2.1. Self-similar variables and gradient flow structure

We introduce the following self-similar variablesy = x(1 + 2t)−
1
2 , for all t > 0 and x ∈ R

τ =
1
2

log(1 + 2t).
(2.1)
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Now, observe that if u(x, t) is a solution of system (1.2), then the function

ρ(y, τ ) = (2t + 1)
1
2 u(x, t)

with (y, τ ) defined by (2.1) satisfies the equation

∂τρ = ∂y(yρ)+ κ∂yyρ − (H(ρ)ρ)y . (2.2)

Then, we can write the system (1.2) in the new variables as
∂τρ = ∂y(yρ)+ κ∂yyρ − (H(ρ)ρ)y , ∀τ > 0 and y ∈ R
ρ(y, 0) = u0 ∀y ∈ R. (2.3)

Eq. (2.3) has a gradient flow structure in the sense of Section 1.2, i.e., we can rewrite it in the
following form

∂ρ

∂t
=

∂

∂y


ρ
∂

∂y


κ log ρ −

1
π

log |y| ∗ ρ +
y2

2


, (2.4)

where we have replaced the letter τ by t again. From now on, we identify the time dependent
probability measure ρ(·, t) = ρt with its density with respect to Lebesgue and we use the notation
dρt = dρ(x, t) = ρ(x, t) dx .

Let us begin by introducing a precise definition of a free energy functional Eκ,α on the space
of probability measures P2(R). We define Eκ,α : P2(R) → R ∪ {+∞} as

Eκ,α[ρ] =


κ U [ρ] + α V[ρ] + W[ρ] for ρ ∈ P ac

2 (R)
+∞ otherwise,

(2.5)

with α, κ ≥ 0 and where for ρ ∈ P2(R)

U [ρ] :=




R
ρ(x) log ρ(x) dx for ρ ∈ P ac

2 (R)

+∞ otherwise
, V[ρ] :=


R

x2

2
ρ(x) dx,

and W[ρ] :=
1
2


R2

W̃ (x − y)ρ(x)ρ(y) dx dy,

where W̃ is given by (1.8). We can now identify that (2.3) or (2.4), (1.1) and (1.2) belong to
the class of Eqs. (1.5) with the choices W (x) = W̃ (x),U (s) = κ s log s and V = α x2

2 with
different values for κ and α. Thus, they are formal gradient flows of the corresponding free energy
functionals Eκ,α[ρ]. It can be easily checked that the functional Eκ,α is formally a Lyapunov
functional for Eq. (2.2), i.e.,

d

dt
Eκ,α[ρ(t)] = −Lκ,α[ρ(t)] ≤ 0

where

Lκ,α[ρ] :=


R


κ log ρ(x)+ α

x2

2
−


R

W̃ (x − y)ρ(y)dy


x

2

ρ(x) dx .

Let us remark that the functional W is also known as the logarithmic energy of ρ as introduced
and deeply analyzed in [29] (see also [31,32]). The next lemma shows the lower semi-continuity
of the functionals U(ρ),V(ρ), and W(ρ), and as a consequence, of the functional Eκ,α .
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Lemma 2.1. The functionals U ,V , and W are lower semi-continuous in P2(R) with respect to
d2. Moreover, the functionals U and E0,α with α > 0 are weak-∗ lower semi-continuous in
P2(R).

Proof. The weak-∗ lower semi-continuity of U is proven in [26, Lemma 3.4], which implies
the d2 lower semicontinuity. The weak-∗ lower semi-continuity of V is straightforward from
properties of weak-∗ sequences and it is trivially continuous for the d2 topology.

Before starting the proof for W , let us comment that it is essentially contained in
[26, Lemma 3.6], although the author deals with a more regular interaction potential W (x). The
proof is inspired from arguments in [29, Theorem 1.3]. Here, we included it for completeness.
Let us consider the functional

E0,α[ρ] := αV(ρ)+ W(ρ) =


R2

R(x, y) ρ(x)ρ(y) dx dy,

with α > 0 and

R(x, y) :=

−
1

2π
log


|x − y|e−

απ(x2
+y2)

2


for x ≠ y

+∞ for x = y.

Since the function R(x, y) → ∞ as |(x, y)| → ∞ and as |x − y| → 0, it is obviously smooth
except at the diagonal and bounded from below, then it can be approximated pointwise by an
increasing sequence of functions Rk(x, y) ∈ C∞

0 (R × R) as k → ∞. If ρn → ρ weak-∗ as
measures, then certainly the product measure ρn × ρn converges to ρ× ρ weak-∗ as measures in
R × R. Now, define

Ek
0,α[ρ] :=


R2

Rk(x, y) ρ(x)ρ(y) dx dy,

and note that Ek
0,α[ρn] ≤ E0,α[ρn], for all n ∈ N. Then, due to the weak-∗ convergence, we get

Ek
0,α[ρ] = lim

n→∞
Ek

0,α[ρn] ≤ lim inf
n→∞

E0,α[ρn],

for fixed k ∈ N. On the other hand, by monotone convergence Ek
0,α[ρ] → E0,α[ρ] as k → ∞ and

we obtain E0,α[ρ] ≤ lim infn→∞ E0,α[ρn]. The remaining statements follow from the continuity
of V in the d2 topology. �

Remark 2.2. Let us note that the domain of the functional W consists only of absolutely
continuous measures with respect to Lebesgue D(W) ⊂ P ac

2 (R). This is a consequence of
the definition of W̃ and the fact that given a measure µ with atomic or singular part in its
Lebesgue decomposition, then µ × µ will charge the diagonal with positive measure. Notice
that P2 ∩ L∞(R) ⊂ D(W).

2.2. Minimizing the inviscid free energy functional

The aim of this section is to make a summary about how to show the existence of a unique
minimum among all probability measures in P2(R) to the free energy functional P[ρ] :=

E0,1[ρ]. By Lemma 2.1, we already know that P is weak-* lower semi-continuous, and then,
in order to ensure the existence of a minimum, we only need to show that the functional is
bounded from below. Uniqueness, compact support, characterization and the explicit form of
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the minimum of this functional were studied in relation to the logarithmic capacity of sets, free
probability and connections to random matrices in [29,23,31,32]. We will prove some of them
for the sake of the reader in the next proposition.

Proposition 2.3 ([29,23]). Let ϑ := inf {P[ρ]; ρ ∈ P2(R)}. Then:

(i) ϑ is finite.
(ii) There is a unique ρ̄ ∈ P ac

2 (R) such that P[ρ̄] = ϑ with compact support.
(iii) Moreover, one can characterize ρ̄ as the unique measure in P ac

2 (R) satisfying that

x2

2
−


R

log |x − y|ρ̄(y) dy ≥ Cρ̄

a.e. x ∈ R with equality on supp(ρ̄) and with

Cρ̄ := 2ϑ −


R

x2

2
ρ̄(x) dx .

(iv) Furthermore, the minimum can be explicitly computed by using the previous characteriza-
tion and is given by the semicircle law, i.e., ρ̄ is the absolutely continuous measure with
respect to Lebesgue with density given by

ρ̄(x) dx =
1
π


(2 − x2)+ dx .

Proof. Part (i): We first show that P[ρ] > 0 for all ρ ∈ P ac
2 (R) implying that ϑ > −∞. For

this, observe that, for all (x, y) ∈ R2,

0 ≤ |x − y|e−
(x2

+y2)
2 ≤ (|x | + |y|)e−

(|x |+|y|)2

4 ≤ sup
r≥0

re−
r2
4 =


2
e

1/2

< 1.

Thus,

− log


|x − y|e−
(x2

+y2)
2


≥

1
2

log(e/2) > 0

and

P[ρ] =
1
2


R2

− log


|x − y|e−
(x2

+y2)
2


dρ(x)dρ(y)

≥


R2

1
2

log(e/2)dρ(x)dρ(y) =
1
2

log(e/2) > 0. (2.6)

Therefore, ϑ > 0. Choose ρ12 = dx |
(1,2) ∈ P ac

2 (R), where dx denotes the Lebesgue measure.
Observe that − log |x − y| ≥ 0 on (1, 2) × (1, 2). Noting that sup{|2 − y| , |1 − y|} ≤ 1 when
y ∈ (1, 2), then we obtain from Tonelli theorem that

−


R2

log |x − y| d(ρ12 × ρ12) = −


(1,2)


(1,2)

log |x − y|dx


dy

≤ −


(1,2)


(0,1)

log zdz


dy < ∞.

We conclude that ϑ < +∞.
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Part (ii): The proof follows closely [29, Theorem I.1.3]. We start by showing that given a
probability measure, we can always construct another compactly supported measure that lowers
the energy. First, we observe that for a sequence (xn, yn)

∞

n=1 with limn→∞ (|xn| + |yn|) = ∞,
we have

0 ≤ |xn − yn|e−
(x2

n+y2
n )

2 ≤ (|xn| + |yn|) e−
(|xn |+|yn |)2

4 → 0, as n → ∞,

and then

lim
n→∞

log

|xn − yn|e−

(x2
n+y2

n )
2

−1

= +∞.

Therefore, there exists sufficiently small ε > 0, such that

− log |x − y|e−
(x2

+y2)
2 > 2(ϑ + 1) if (x, y) ∉ Σε × Σε, (2.7)

with Σε := {x ∈ R; e−x2/2
≥ ε}.

Next, we claim that if ρ ∈ P(R), with supp(ρ)∩ (R \ Σε) ≠ ∅ and P(ρ) < ϑ + 1, then there
exists a ρ̃ ∈ P(Σε) such that P(ρ̃) < P(ρ). Note this implies that there exists ε > 0, such that

ϑ = inf {P(ρ); ρ ∈ P(Σε)} . (2.8)

Thus P(ρ) = ϑ is possible only for measures ρ with support in Σε.
Now, observe that (2.7) and (2.6) together with P(ρ) < ϑ+1 implies ρ(Σε) > 0. This allows

us to define

ρ̃ =
ρ|Σε

ρ(Σε)
.

Moreover, we have

P[ρ] =
1
2


Σε×Σε

− log

|x − y|e−

x2
+y2

2


ρ(x)ρ(y)dxdy


+

1
2


(Σε×Σε)c

− log

|x − y|e−

x2
+y2

2


ρ(x)ρ(y)dxdy


> ρ(Σε)2


1
2


Σε×Σε

− log

|x − y|e−

x2
+y2

2


ρ̃(x)ρ̃(y)dxdy


+

1
2


R2\Σε×Σε

2(ϑ + 1)ρ(x)ρ(y)dxdy

= P[ρ̃]ρ(Σε)2 + (ϑ + 1)(1 − ρ(Σε)2).
> P[ρ̃]ρ(Σε)2 + P[ρ](1 − ρ(Σε)2),

since P(ρ) < ϑ + 1. Hence, P[ρ] > P[ρ̃] and the claim follows.
As a consequence of (2.8), if ρ is a minimum for P , then ρ has compact support in Σε, and

thus ρ ∈ P2(R).
A standard argument in calculus of variations now shows that the minimum is attained in the

set P2(R). By definition of ϑ and (2.8), there exists a minimizing sequence, i.e., {ρn} ⊆ P2(R)
with P[ρn] → ϑ as n → ∞ with supp(ρn) ⊂ Σε for all n ∈ N. Note that each ρn has
support in the compact Σε, and then we have that the minimizing sequence of measures is tight
in the weak convergence of measures. Therefore, we can select from {ρn}n∈N a weak∗ convergent
subsequence and without loss of generality, we can assume that {ρn}n∈N itself converges to
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ρ ∈ P2(R) in the weak∗ topology of measures and in the d2 sense. Therefore, from weak-∗
semi-continuity of P , we have

ϑ ≤ P[ρ] ≤ lim inf
n→∞

P[ρn] = ϑ

and thus P[ρ] = ϑ . The absolutely continuity of the minimum is a direct consequence of the
Remark 2.2 since D(W) ⊂ P ac

2 (R).
The uniqueness of the minimum is proven in [29, Theorem I.1.3]. However, in our context

this will be clear later on from convexity properties, so we postpone this discussion.
Parts (iii) and (iv): The characterization of the minimum is due to the Euler–Lagrange equa-

tions of the variational problem with the mass constraint. However, since the minimum has
compact support, then one obtains this variational inequality outside its support. Moreover, this
characterization allows to find explicitly the minimum given by the absolutely continuous mea-
sure with density defining the semicircle law in (iv). We refer for all details to [29, Theorems I.1.3
and IV.5.1] and [23] since it is a well-known fact in free probability and logarithmic capacity. �

Remark 2.4. An important consequence of this result is that there exists a unique compactly
supported stationary solution of problem (2.3) in P2(R) explicitly given by the semicircle
law [23] or the Barenblatt–Pattle profile for m = 3 of nonlinear diffusions [11]. Therefore, using
the self-similar change of variables (2.1), the problem (1.2) admits a unique, up to invariance
and translations, global in time self-similar solution with initial data in P2(R). This is already
obtained and studied in [17,6].

2.3. The viscous case κ > 0

In this subsection, we are concerned with the study of the functional Eκ,α for κ > 0. Our
intent is to show that functional reaches a unique minimum point on P ac

2 (R). As we already
discussed before, a suitable notion of convexity of the functional in the set of measures will
be very important in this case. Next, we recall the definition of convexity along generalized
geodesics of a functional E : P2(R) −→ R.

Definition 2.5 ([2]). A generalized geodesic connecting ρ to µ (with base in ν and induced
by γ ) is a curve of the type gt =


π2→3

t


♯γ, t ∈ [0, 1], where γ ∈ Γ (ν, ρ, µ), π1,2

♯ γ ∈

Γ0(ν, ρ), π
1,3
♯ γ ∈ Γ0(ν, µ), and π2→3

t = (1 − t)π2 + tπ3.

In particular, when dealing with absolutely continuous measures ρ,µ, ν ∈ P ac
2 (R) and with

ρ = ν, gt :=

(1 − t)I d + tTµρ


♯
ρ is a generalized geodesic connecting ρ to µ. In this case, we

call gt the displacement interpolation between ρ and µ.

Definition 2.6 ([2]). A functional E : P2(R) → (−∞,+∞] is λ-convex along generalized
geodesics (a.g.g. by shorten) if for every ν, ρ, µ ∈ D(E) := {µ ∈ P2(R); E[µ] < ∞} ⊂ P2(R)
and for every generalized geodesic gt connecting ρ to µ induced by a plan γ ∈ Γ (ν, ρ, µ), the
following inequality holds:

E[gt ] ≤ (1 − t)E[ρ] + t E[µ] −
λ

2
t (1 − t) d2

γ (ρ, µ),

where

d2
γ (ρ, µ) :=


R3

|x3 − x2|
2 dγ (x1, x2, x3) ≥ d2

2 (ρ, µ).
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If gt is the displacement interpolation and λ = 0, we say that the functional E is displacement
convex as originally introduced in [26].

We readily apply these notions of convexity to our functional Eκ,α .

Proposition 2.7. Let κ, α ≥ 0. The functional Eκ,α defined by (2.5) is α-convex along
generalized geodesics.

Proof. Following the notation in (2.5), we can reduce ourselves to show that the functional W
is convex along generalized geodesics in D(Eκ,α) ⊂ P ac

2 (R). In fact, it is well-known that U
is convex (λ = 0) along generalized geodesics, and that the functional V is 1-convex along
generalized geodesics in D(Eκ,α) ⊂ P ac

2 (R); see [2,26] for details.
Let ρ,µ, ν ∈ D(Eκ,α) ⊂ P ac

2 (R) and gt be a generalized geodesic connecting ρ to µ with
base point ν. As we are working on the real line R, we can express the generalized geodesics as

gt = ((1 − t)T ρν + tTµν )#ν,

where T ρν and Tµν are the optimal transport between ν and ρ, and ν and µ respectively, with the
properties in Lemma 1.4.

Let us observe that by definition of gt and its absolute continuity with respect to Lebesgue,
we get

W[gt ] =


R2

− log(|x − y|) d(gt × gt )

=


R2

− log(|(1 − t)(T ρν (x)− T ρν (y))+ t (Tµν (x)− Tµν (y))|) d(ν × ν)

≤ (1 − t)


R2
− log(|(T ρν (x)− T ρν (y))|) d(ν × ν)

+ t


R2
− log(|(Tµν (x)− Tµν (y))|) d(ν × ν)

= (1 − t)W[ρ] + t W[µ],

where the last step follows from convexity of the function − log x for x > 0 and the increasing
character of the transport maps T ρν and Tµν . This last step is fully rigorous provided the following
claim (C) holds: there exists a ν-null set A such that

(1 − t)(T ρν (x)− T ρν (y))+ t (Tµν (x)− Tµν (y)) ≠ 0,

for all t ∈ [0, 1], x, y ∈ Ac and x ≠ y. In other words, the interpolation map reaches the
logarithmic singularity only if x = y or in a ν × ν-null set.

In order to prove this claim, we remind that the optimal transport on the real line between two
measures in P ac

2 (R) is essentially increasing; see Lemma 1.4. Now, let A be a ν-null set such
that Tµν and T ρν are increasing in Ac. If x, y ∈ Ac and x ≠ y then let us show that

(1 − t)(T ρν (x)− T ρν (y))+ t (Tµν (x)− Tµν (y)) ≠ 0, ∀t ∈ [0, 1].

To prove this, suppose that ∃t0 ∈ (0, 1], x, y ∈ Ac and x ≠ y such that

(1 − t0)(T
ρ
ν (x)− T ρν (y))+ t0(T

µ
ν (x)− Tµν (y)) = 0, (2.9)

then we deduce

(Tµν (x)− Tµν (y))

(T ρν (x)− T ρν (y))
=

t0 − 1
t0

≤ 0,
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which provides a contradiction, because the optimal transport maps Tµν and T ρν are increasing
in Ac. For the case t0 = 0 in (2.9), we have T ρν (x) − T ρν (y) = 0 which yields x = y or
x, y ∈ A, because of essentially injectivity of T ρν . This finally shows the claim (C), and thus that

W[gt ] is a convex function in t ∈ [0, 1] for all generalized geodesics corresponding to absolutely
continuous measures, which gives by definition the convexity of W along generalized geodesics
in D(Eκ,α). �

Proposition 2.8. Let κ ≥ 0, α > 0, and ϑκ,α := inf


Eκ,α(ρ); ρ ∈ P2(R)

. Then:

(i) ϑκ,α is finite.
(ii) There is a unique ρ̄κ,α ∈ P ac

2 (R) such that Eκ,α[ρ̄κ,α] = ϑκ,α .

Proof. This results is proven for κ = 0 in Proposition 2.3, except the uniqueness part. Let us
assume from now that κ > 0.

Part (i): Recalling the definition of the functional Eκ,α in terms of U ,V , and W we split

Eκ,α = E0,α/2 + κU +
α

2
V.

It is straightforward to use Jensen’s inequality to show that

κU [ρ] +
α

2
V[ρ] = κ


R

ρ

e−δx2/2
log


ρ

e−δx2/2


e−δx2/2dx ≥

κ

2
(log δ − log(2π)),

∀ρ ∈ P ac
2 (R)

with δ = α/2κ . Proceeding analogously to the proof of Part (i) of Proposition 2.3, we obtain

0 ≤ |x − y|e−α
(x2

+y2)
4 ≤ (|x | + |y|)e−α

(|x |+|y|)2

8 ≤ sup
r>0

re−α r2
8 =


4
αe

1/2

,

and

E0,α/2[ρ] =


R2

− log


|x − y|e−α
(x2

+y2)
4


dρ(x)dρ(y) ≥ −

1
2

log


4
αe


. (2.10)

Therefore, the functional Eκ,α is bounded from below, and so ϑκ,α > −∞. Since the domain
D(Eκ,α) ≠ ∅, there is ρ ∈ P2(R) such that Eκ,α(ρ) < ∞, and therefore the infimum ϑκ,α is
finite.

Part (ii): From Lemma 2.1, Eκ,α is weak-∗ semi-continuous in P ac
2 (R), which shows that the

infimum is achieved at some point ρ̄ ∈ P ac
2 (R). In fact, it is easy to check based on the same

arguments for Part (i) and Proposition 2.3 that any minimizing sequence is weakly compact in
L1(R), see similar arguments in [7], since κ > 0.

The uniqueness claim for κ ≥ 0 follows from the strict displacement convexity of Eκ,α .
Indeed, let ρ1 and ρ2 be two different minima in P ac

2 (R) to Eκ,α and consider ρ 1
2

the
displacement interpolation between ρ1 and ρ2 at t = 1/2. By the α-displacement convexity
of Eκ,α , we have

ϑκ,α ≤ Eκ,α[ρ 1
2
] <

1
2

Eκ,α[ρ1] +
1
2

Eκ,α[ρ2] = ϑκ,α,

which provides a contradiction. Therefore, there exists a unique minimum of Eκ,α . �
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3. Well-posedness, asymptotic behavior and inviscid limit

As pointed out in the introduction we will obtain solutions for (2.3) as the limit of a Euler
approximation scheme in probability space P2(R). More precisely, consider a step time τ > 0
and an initial data ρ0 ∈ P2(R). We define, for a fixed µ, the functional I(τ, µ, .) : P2(R) →

(−∞,∞] as

I(τ, µ; ρ) :=
1

2τ
d2

2 (µ, ρ)+ E[ρ].

Formally, we define the following recursive sequence (ρn
τ )n∈N:

ρ0
τ := ρ0 (3.1)

ρn
τ = min

ρ∈P2(R)
I (τ, ρn−1

τ ; ρ), n ∈ N, (3.2)

which can be seen as the discrete approximate Euler solution to the gradient flux equation

∂ρ

∂t
= −∇E[ρ], t > 0

in the metric space (P2(R), d2). More precisely, one calls a discrete solution, the curve ρτt
obtained as the time interpolation of the discrete scheme (3.1)–(3.2) connecting every pair
(ρn−1
τ , ρn

τ ) with a velocity constant geodesic in t ∈ [(n − 1)τ, nτ); see [2].

3.1. Gradient flows

Below we remember the definition of a gradient flow solution.

Definition 3.1. We say that a map ρt ∈ AC2
loc((0,∞); P2(R)) is a solution of the gradient flow

equation

−vt ∈ ∂E(ρt ), t > 0,

if −vt ∈ Tanρt P2(R) belongs to the subdifferential of E at ρt , a.e. t > 0.

It is known that ρt being a gradient flow in P2(R) is equivalent to the existence of a velocity
vector field −vt ∈ Tanρt P2(R) ∩ ∂E(ρt ) a.e. t > 0, such that ∥vt∥L2

ρt (R)
∈ L2

loc(0,∞) and the
continuity equation holds in the distribution sense:

∂(ρt )

∂t
+ ∇ · (ρtvt ) = 0 in R × (0,∞). (3.3)

The next theorem ensures the existence of a gradient flow solution for the free energy functional
Eκ,α as in (2.5).

Theorem 3.2. Let κ, α ≥ 0, ρ0 ∈ P2(R) and the functional Eκ,α . The following assertions hold.

1. (Existence and uniqueness) The discrete solution ρτt converges locally uniformly to a locally
Lipschitz curve ρt := St [ρ0] in P2(R) which is the unique gradient flow of Eκ,α with
limt→0+ ρt = ρ0. Moreover, the curve lies in P ac

2 (R), for all t > 0.
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2. (Contractive semigroup) The map t → St [ρ0] for all α ≥ 0 is a α-contracting semigroup on
P2(R), i.e.

d2(St [ρ0], St [µ0]) ≤ e−αt d2(ρ0, µ0) for all ρ0, µ0 ∈ P2(R).

3. (Asymptotic behavior) Let α > 0 and let us denote by ρ̄κ,α the unique minimum of Eκ,α . Then
for all 0 < t0 < t < ∞, we have

d2(ρt , ρκ,α) ≤ e−α(t−t0) d2(ρt0 , ρκ,α)

and

Eκ,α[ρt ] − Eκ,α[ρκ,α] ≤ e−2α(t−t0)(Eκ,α[ρt0 ] − Eκ,α[ρκ,α]).

4. (Free energy identity) The solution ρt := St [ρ0] is a curve of maximal slope and it satisfies
the identity:

Eκ,α[ρt ] = Eκ,α[ρs] +

 t

s


R

|vτ (x)|
2dxdτ

for all 0 ≤ s ≤ t , where vt ∈ L2
loc(0,∞; L2

ρt
(R)) is the associated velocity field satisfying

(3.3) in Definition 3.1.

Proof. First notice that P2 ∩ L∞
⊂ D(Eκ,α) ⊂ P ac

2 (R) by Remark 2.2 and D(Eκ,α) = P2(R).
Let us start with the case α > 0. Collecting the results obtained through previous sections, we
have that the functional Eκ,α : P2(R) → (−∞,+∞] is a proper, l.s.c., coercive functional and
α-convex along generalized geodesics. Moreover, I(µ, τ ; ρ) admits at least a minimum pointµτ ,
for all τ ∈ (0, τ∗) and µ ∈ P2(R). The minimum µτ ∈ P ac

2 (R) for κ > 0, because minimizing
sequences are weakly compact in L1(R) as in Proposition 2.8 and by Remark 2.2 if κ = 0.
Therefore, all the statements result directly from the general theory of gradient flows developed
in [2, Theorem 11.2.1]. In case α = 0, we deal with plain convex functionals along generalized
geodesics and the same results apply. However, we need to be careful with the coercivity and the
existence of minimizers for the one-step variational scheme since we lack a direct confinement.
This is easily provided by the following observation using the triangular inequality and

I(τ, µ; ρ) :=
1

2τ
d2

2 (µ, ρ)+ Eκ,0[ρ] ≥
1

4τ
d2

2 (ρ, δ0)−
1

2τ
d2

2 (δ0, µ)+ Eκ,0[ρ]

= −
1
τ

V[µ] + Eκ,2/τ [ρ] (3.4)

for all µ, ρ ∈ P2(R) and all τ > 0. Therefore, this implies the boundedness from below, the
existence of minimizers of the one-step variational scheme, and the coercivity in the case of
α = 0. Again the results of [2, Theorem 11.2.1] apply directly. �

Remark 3.3. As a consequence of the previous theorem, we have shown the global-in-time well-
posedness for the Cauchy problem for general measures in P2(R) as initial data for Eqs. (1.1)
and (1.2) and their self-similar counterparts (2.3). Moreover, we have shown the convergence
towards self-similarity in the sense expressed in the third part of Theorem 3.2. Note that the
gradient flows obtained in Theorem 3.2 for the functionals Eκ,0 and Eκ,1 are equivalent through
the change of variables (2.1). Finally, note that the evolution is defined in a unique way for any
initial data in P2(R). However, the evolution flow regularizes instantaneously since it belongs
to P ac

2 (R) for all t > 0. This is the precise mathematical statement showing that the repulsive
logarithmic interaction potential in one dimension is “very repulsive”.
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Remark 3.4 (Power-Law Potentials). Consider the power-law interaction potential Wβ(x) =

|x |
−β , for 0 < β < 1, and its natural extension

W̃β(x) =


|x |

−β for x ≠ 0
+∞ at x = 0.

(3.5)

Let the free energy functional Eβ,κ,α : P2(R) → R ∪ {+∞} be defined as in (2.5) with W̃β

instead of W̃ . Noting that |x |
−β is locally integrable when 0 < β < 1, similar arguments as

in Propositions 2.3 and 2.8 give that the minimum ϑβ,κ,α is finite. Moreover, P2 ∩ L∞(R) ⊂

D(Eβ,κ,α) ⊂ P ac
2 (R) and D(Eβ,κ,α) = P2(R). Since the function |x |

−β is convex for x > 0,
we have that Eβ,κ,α is α-convex along generalized geodesics. Thus, the results on gradient flows
given by Theorem 3.2 also hold true for (3.5) and we can take initial measure ρ0 ∈ P2(R).

For range β ≥ 1, we have D(W) = ∅ and D(Eβ,κ,α) = ∅ and then the theory trivializes. In
particular, if ρ is a nonnegative continuous function, W(ρ) < ∞ and K = {x ∈ R : ρ(x) > 1

n }

is a positive measure set, for some n ∈ N, then

∞ =
1

2n2


K×K

1

|x − y|
β

dxdy ≤ W(ρ) < ∞,

which gives a contradiction. Therefore, there is no nonnegative continuous probability density
such that W(ρ) < ∞.

Remark 3.5 (Non-Singular Power-Law Repulsive Potentials). Consider now the potentials
Wξ (x) = − |x |

ξ , for 0 < ξ ≤ 1. Note that Wξ (x) is locally integrable and convex for x > 0. Let
Eξ,κ,α : P2(R) → R ∪ {+∞} be defined as in (2.5) with κ > 0 and W̃ξ instead of W̃ . We claim
that Eξ,0,α is bounded from below. Indeed, there is C ∈ R such that

Rξ,α(x, y) = −
1
2

|x − y|
ξ

+ α
x2

+ y2

4
≥ Cξ > −∞, for 0 < ξ < 2.

Then it is easy to see that

Eξ,0,α[ρ] = αV(ρ)+ W(ρ) =


R2

Rξ,α(x, y) dρ(x)dρ(y)

is bounded from below. Therefore, by proceeding similarly to the proof of Propositions 2.3 and
2.8, again we get that the minimum ϑξ,κ,α of Eξ,κ,α is finite. Also, P2 ∩ L∞(R) ⊂ D(Eξ,κ,α) ⊂

P ac
2 (R) and D(Eξ,κ,α) = P2(R). It follows from the convexity of Wξ for x > 0 that Eξ,κ,α is α-

convex along generalized geodesics and then the results on gradient flows given by Theorem 3.2
hold true for κ > 0.

Theorem 3.6 (Inviscid Limit). Let us consider the functionals Eκ,α and E0,α with α ≥ 0,
corresponding to viscosity κ > 0 and κ = 0 respectively, and assume that ρ0 ∈ D(Eϵ0,α)

with ϵ0 > 0. If ρκ(t) and ρ(t) are the corresponding gradient flow solutions in P2(R) with
initial data ρ0, then

ρκ(t) → ρ(t) in P2(R)

locally uniformly in [0,∞), as κ → 0+.

Proof. In view of the stability property of [2, Theorem 12.2.1], we need only to verify (in a
neighborhood of κ = 0) the equicoercivity of the family of functionals {Eκ,α}κ≥0 and the uniform
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boundedness at ρ0. More precisely, we need to show

sup
κ∈(0,ϵ0)

Eκ,α[ρ0] < ∞ and inf
κ∈(0,ϵ0),ρ∈P2(R)

1
2τ

d2
2 (µ, ρ)+ Eκ,α[ρ] > −∞,

for some τ > 0 and µ ∈ P2(R) and ϵ0 > 0. First, observe that ρ0 ∈ D(Eϵ0,α) implies
U [ρ0] < ∞,V[ρ0] < ∞ and W[ρ0] < ∞. It follows from (2.5) that ρ0 ∈ D(Eκ,α) for all
κ ∈ (0,∞). Also,

sup
κ∈(0,ϵ0)

Eκ,α[ρ0] ≤ max{0, ϵ0 U [ρ0]} + αV[ρ0] + W[ρ0] < ∞.

In order to conclude the proof, it remains to verify the equicoercivity. By using (3.4), we
observe

1
2τ

d2
2 (µ, ρ)+ Eκ,α[ρ] ≥

1
2τ

d2
2 (µ, ρ)+ Eκ,0[ρ] ≥ −

1
τ

V[µ] + Eκ,1/2τ [ρ]

for all α ≥ 0. Let us split the functional Eκ,1/τ as

Eκ,1/2τ [ρ] = κU [ρ] +
1

2τ
V[ρ] + W[ρ] = E0,1/4τ [ρ] + κU [ρ] +

1
4τ

V[ρ].

Let us now remark that κU +
α
2 V is bounded from below. Note that it is the relative logarithmic

entropy functional leading to the classical linear Fokker–Planck equation whose minimum is a
Gaussian M(x) determined by

M(x) =


4π
κ

α

−1/2
exp


−
αx2

4κ


.

Therefore, we get

κU [ρ] +
α

2
V[ρ] ≥ κU [M] +

α

2
V[M] = −

1
2

log


4π
κ

α


≥ −

1
2

log


4π
ϵ0

α


, (3.6)

for κ ∈ (0, ϵ0). Due to Proposition 2.8 and (2.10), E0,1/4τ is also bounded from below by ϑ0,1/4τ .
Using (3.6) with α =

1
2τ , we conclude that

inf
κ∈(0,ϵ0),ρ∈P2(R)


1

2τ
d2

2 (µ, ρ)+ Eκ,α[ρ]


≥ −

1
τ

V[µ] −
1
2

log (8πϵ0τ)+ ϑ0,1/4τ . �

3.2. Solutions in the sense of distributions

An important point is to know whether the gradient flow solutions are solutions in the sense
of distributions. First, let us define the notion of weak solutions which we deal with. We say that
a measure ρt is a weak solution to Eq. (2.3), with initial condition ρ0, if for all ϕ ∈ C∞

0 (R)

d

dt


R
ϕ(x)dρt = κ


R
ϕ′′(x)dρt −


R
ϕ′(x)xdρt +

1
2


R2

ϕ′(x)− ϕ′(y)

x − y
d(ρt × ρt ) (3.7)

in the distributional sense in (0,∞) with ρt ⇀ ρ0 weakly-∗ as measures.
In order to obtain a connection between gradient flows and weak solutions, we need to

describe, see [2], the minimal selection of the subdifferential of E = Eκ,1, that is the set
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∂◦Eκ,1(ρt ). For that matter we need to consider the following functional: for each fixed ρ ∈

P2(R) we define Lρ : C1
0(R) → R as

Lρ(ϕ) = lim
δ→0+


|x−y|≥δ

1
x − y

ϕ(x)d(ρ × ρ)

= lim
δ→0+

1
2


|x−y|≥δ

ϕ(x)− ϕ(y)

x − y
d(ρ × ρ) < ∞, ∀ϕ ∈ C1

0(R). (3.8)

It is straightforward to check thatLρ(ϕ) ≤
1
2

ϕ′


∞


R2

d(ρ × ρ) =
1
2

ϕ′


∞
, (3.9)

and therefore Lρ ∈ (C1
0(R))

∗. So, there exists µ ∈ M(R) and a constant c0 such that (see
[19, p. 225])

Lρ(ϕ) =


R
ϕ′dµ+ c0ϕ(0) ∀ϕ ∈ C1

0(R).

From (3.9), we can also see that c0 = 0 and we obtain the following representation to Lρ :

Lρ(ϕ) =


R
ϕ′dµ, ∀ϕ ∈ C1

0(R). (3.10)

Lemma 3.7. Let κ ≥ 0 and µ as mentioned above. If a measure ρ ∈ D(Eκ,α) ⊂ P2(R) belongs
to D(|∂Eκ,α|) then we have (κρ + µ) ∈ W 1,1

loc (R) and

ρω = ∂x (κρ + µ)+ αρx for some ω ∈ L2
ρ(R). (3.11)

In this case the vector ω defined by (3.11) is the minimal selection in ∂Eκ,α[ρ], i.e. ω =

∂◦Eκ,α[ρ].

Proof. For each compactly supported smooth test function ϕ ∈ C∞

0 (R), let us consider the map
ψε := I d + εϕ. It is easy to check that ψε#ρ ∈ D(Eκ,α), when ρ ∈ D(Eκ,α) and for ε > 0 small
enough. Since ρ ∈ D(|∂Eκ,α|) and from the definition of metric slope |∂Eκ,α|[ρ], see [2], we
have

|A1(ϕ)+ A2(ϕ)+ A3(ϕ)| :=

κ lim
ε→0

U [ψε#ρ] − U [ρ]

ε
+ α lim

ε→0

V[ψε#ρ] − V[ρ]

ε

+ lim
ε→0

W[ψε#ρ] − W[ρ]

ε


≤ |∂Eκ,α|[ρ] lim

ε→0

d2(ψε#ρ, ρ)

ε
< ∞.

The terms A1 and A2 can be exactly treated as in [2, Chapter 11] and one obtains

A1(ϕ) = −κ


R
ϕ′ dρ and A2(ϕ) = α


R

xϕ dρ.

Now, we deal with the term A3. Notice that the map

Q(ε, x, y) =
1
2

− log |(x − y + ε(ϕ(x)− ϕ(y)))| − (− log |x − y|)

ε
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is nondecreasing in ε > 0, for fixed x, y ≠ 0. As A1(ϕ) and A2(ϕ) are finite, then A3(ϕ) is also
finite. By the monotone convergence theorem, we have

A3(ϕ) = lim
ε→0


R2

Q(ε, x, y)d(ρ × ρ) = −
1
2


R2

ϕ(x)− ϕ(y)

x − y
d(ρ × ρ)

= −Lρ(ϕ) = −


R
ϕ′ dµ < ∞.

Notice that the second integral above is not a singular integral because ϕ ∈ C∞

0 (R). Observing
that

lim
ε→0

d2(ψε#ρ, ρ)

ε
≤ ∥ϕ∥L2

ρ (R) ,

we get

(A1 + A2 + A3)(ϕ) =


R

−κϕ
′

(x)dρ + α


R

xϕ(x)dρ − Lρ(ϕ)

≥ −|∂Eκ,α|[ρ] lim
ε→0

d2(ψε#ρ, ρ)

ε
≥ −|∂Eκ,α|[ρ] ∥ϕ∥L2

ρ (R) .

Changing ϕ by −ϕ, we finally obtain
R
(−κϕ′

+ αxϕ)dρ − Lρ(ϕ)

 ≤ |∂Eκ,α|[ρ] ∥ϕ∥L2
ρ (R) .

So, there exists ω ∈ L2
ρ(R) with ∥ω∥L2

ρ (R) ≤ |∂Eκ,α|[ρ] such that
R
ωϕ dρ = (A1 + A2 + A3)(ϕ)

= −


κ


R
ϕ′ dρ + Lρ(ϕ)


+ α


R

xϕ dρ, ∀ϕ ∈ C∞

0 (R). (3.12)

Thus ω ∈ ∂Eκ,α[ρ] and ω is the minimal selection in ∂Eκ,α[ρ], i.e. ω = ∂◦Eκ,α[ρ]. Finally, let
us characterize ω. Since ρ ∈ P2(R) implies that ψ[ϕ] =


R xϕ dρ is bounded in L2

ρ(R) (with
norm at most


R x2dρ), we get

|⟨∂x (κρ + µ), ϕ⟩| =


R
ϕ′ d(κρ + µ)

 ≤


|∂Eκ,α|(ρ)+ α


R

x2dρ


∥ϕ∥L2

ρ (R)

≤


|∂Eκ,α|(ρ)+ α


R

x2dρ


∥ϕ∥∞ .

Therefore, ∂x (κρ + µ) ∈ M(R), i.e. (κρ + µ) ∈ BV (R). Integration by parts holds:
R
ϕ(x)d(∂x (κρ + µ))

 ≤


|∂Eκ,α|(ρ)+ α


R

x2dρ


∥ϕ∥L2

ρ (R) ,

which implies ∂x (κρ + µ) ∈ L2
ρ(R) ∩ M(R) and then (κρ + µ) ∈ W 1,1

loc (R). Finally, coming
back to (3.12), we obtain the following expression for ω, the element of minimal norm in the
subdifferential of Eκ,α: ρω = ∂x (κρ + µ)+ αxρ. �

The next theorem gives a connection between gradient flows and the notion of weak solution
(3.7).
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Theorem 3.8 (Distributional Solution). Let µt correspond to ρt through (3.8). For every ρ0 ∈

P2(R) and every κ, α ≥ 0, the gradient flow ρt in P2(R) of the functional Eκ,α is a distributional
solution of the equation

∂ρt

∂t
=

∂

∂x
(ρtωt ) =

∂

∂x


ρt


∂x (κρt + µt )

ρt
+ αx


, (3.13)

satisfying ρ(t) → ρ0 as t → 0+, ρt ∈ L1
loc((0,+∞); W 1,1

loc (R)), and∂x (κρt + µt )

ρt
+ αx


L2(ρt ;R)

∈ L2
loc(0,+∞).

Proof. Since ωt = ∂◦Eκ,α(ρt ) and ρt is the gradient flow of Eκ,α , it follows from Lemma 3.7
that (3.13) is satisfied by ρt with the additional conditions found in the statement of the theorem.

Now, observe that ρt satisfies (3.13) is equivalent to ρt satisfies

d

dt


R
ϕ(x)dρt = −


R
ϕ′(x)d(∂x (κρt + µt ))− α


R
ϕ′(x)xdρt

=


R
ϕ′′(x)d(κρt + µt )− α


R
ϕ′(x)xdρt

= κ


R
ϕ′′(x)dρt − α


R
ϕ′(x)xdρt +


R
ϕ′′(x)dµt

= κ


R
ϕ′′(x)dρt − α


R
ϕ′(x)xdρt +

1
2


R2

ϕ′(x)− ϕ′(y)

x − y
d(ρt × ρt ),

in the sense of distributions on t ∈ (0,∞) and for all ϕ ∈ C∞

0 (R). �

Remark 3.9. Although in the general theory in [2] the previous result is a characterization of
gradient flow solutions, we do not know how to get the converse in the characterization of the
element of minimal norm in Lemma 3.7 since we do not know how to show that ∂xµ is absolutely
continuous with respect to ρ. This implies that we do not know how to show that distributional
solutions with the properties written in Theorem 3.8 are gradient flow solutions.

Remark 3.10 (Power-Law Potential). In the case of potential W (x) = |x |
−β with 0 < β < 1,

we also have that the associated gradient flow (see Remark 3.4) is a solution in the sense of
distributions as in (3.7) or (3.13). Instead of (3.8), in this time the operator Lρ(ϕ) is given by

Lρ(ϕ) = lim
δ→0+


|x−y|≥δ

−β
(x − y)

|x − y|
β+2 ϕ(x)d(ρ × ρ)

= lim
δ→0+

1
2


|x−y|≥δ

−β
1

|x − y|
β

ϕ(x)− ϕ(y)

x − y
d(ρ × ρ) < ∞,

for ϕ ∈ C1
0(R). Thus, since ρ ∈ D(Eβ,κ,α),Lρ(ϕ) ≤

β

2

ϕ′


∞


R2

1

|x − y|
β

d(ρ × ρ) = C W[ρ]
ϕ′


∞
,

for all ϕ ∈ C1
0(R). Therefore Lρ ∈ (C1

0(R))
∗ and, similarly to (3.10), Lρ(ϕ) =


R ϕ

′dµ, for
ϕ ∈ C1

0(R).
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Remark 3.11 (Non-Singular Power-Law Repulsive Potentials). In the case of potentials
Wξ (x) = − |x |

ξ , for 0 < ξ ≤ 1, we have analogously that the associated gradient flow (see
Remark 3.5) is a solution in sense of distributions as in (3.7) or (3.13). Instead of (3.8), in this
time the operator Lρ(ϕ) is given by

Lρ(ϕ) = lim
δ→0+

−
ξ

2


|x−y|≥δ

|x − y|
ξ ϕ(x)− ϕ(y)

x − y
d(ρ × ρ) < ∞,

for ϕ ∈ C1
0(R). Thus, since ρ ∈ D(Eβ,κ,α), we get

Lρ(ϕ) ≤ C W[ρ]
ϕ′


∞

, for all ϕ ∈ C1
0(R).

Therefore Lρ ∈ (C1
0(R))

∗ and, similarly to (3.10), Lρ(ϕ) =


R ϕ
′dµ, for ϕ ∈ C1

0(R).

Acknowledgments

JAC was partially supported by the Ministerio de Ciencia e Innovación, grant MTM2011-
27739-C04-02, and by the Agència de Gestió d’Ajuts Universitaris i de Recerca-Generalitat
de Catalunya, grant 2009-SGR-345. LCFF was supported by FAPESP-SP, CNPQ and CAPES,
Brazil. JCP was supported by CAPES, grant BEX2872/05-6, Brazil.

References

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Adv.
Differential Equations 10 (3) (2005) 309–360.
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[12] A. Castro, D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Adv. Math. 219 (6)
(2008) 1916–1936.
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