32 research outputs found
Egg size-number trade-off and a decline in oviposition site choice quality: Female Pararge aegeria butterflies pay a cost of having males present at oviposition
Once mated, the optimal strategy for females of the monandrous butterfly, Pararge aegeria, is to avoid male contact and devote as much time as possible to ovipositing, as there is little advantage for females to engage in multiple matings. In other butterfly species the presence of males during egg laying has been shown to affect aspects of oviposition behavior and it has been suggested that repeated interference from males has the potential to reduce reproductive output. The aim of this study was to assess the effects of male presence during oviposition on reproductive output and behavior of a population of P. aegeria obtained from Madeira Island, Portugal, and maintained in the laboratory. Two experiments were performed where females were housed individually in small cages. Experiment 1 examined how social factors influenced the egg laying behavior of females. To do this the presence or absence of males was manipulated and egg size and number was measured over the first 14 days of oviposition. It was observed that when males were present during oviposition females made a trade-off between egg size and number. Experiment 2 examined how social factors affected oviposition site choice. Again, male presence/absence was manipulated, but in this experiment where the female laid her egg in relation to host quality was scored, and the size of the egg laid was measured. In the absence of males females selectively positioned their larger eggs on good quality host plants. However, selective oviposition was no longer observed when females were in the presence of males. We suggest that P. aegeria females from the Madeira Island population are adapted for a flexible oviposition strategy, governed by external cues, allowing a trade-off between egg size and number when the time available for egg laying is limiting
Mothers Matter Too: Benefits of Temperature Oviposition Preferences in Newts
The maternal manipulation hypothesis states that ectothermic females modify thermal conditions during embryonic development to benefit their offspring (anticipatory maternal effect). However, the recent theory suggests that the ultimate currency of an adaptive maternal effect is female fitness that can be maximized also by decreasing mean fitness of individual offspring. We evaluated benefits of temperature oviposition preferences in Alpine newts (Ichthyosaura [formerly Triturus] alpestris) by comparing the thermal sensitivity of maternal and offspring traits across a range of preferred oviposition temperatures (12, 17, and 22°C) and by manipulating the egg-predation risk during oviposition in a laboratory thermal gradient (12–22°C). All traits showed varying responses to oviposition temperatures. Embryonic developmental rates increased with oviposition temperature, whereas hatchling size and swimming capacity showed the opposite pattern. Maternal oviposition and egg-predation rates were highest at the intermediate temperature. In the thermal gradient, females oviposited at the same temperature despite the presence of caged egg-predators, water beetles (Agabus bipustulatus). We conclude that female newts prefer a particular temperature for egg-deposition to maximize their oviposition performance rather than offspring fitness. The evolution of advanced reproductive modes, such as prolonged egg-retention and viviparity, may require, among others, the transition from selfish temperature preferences for ovipositon to the anticipatory maternal effect
Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase
Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (wt/wt) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt%) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyses the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic and sponge), ultimately resulting in the formation of multi-lamellar vesicles