371 research outputs found
Health Care Resource Utilization and Related Costs of Patients With CKD From the United States: A Report From the DISCOVER CKD Retrospective Cohort
Introduction: It is well established that chronic kidney disease (CKD) results in a significant burden on patients’ health and health care providers. However, detailed estimates of the health care resource utilization (HCRU) of CKD are limited, particularly those which consider severity, comorbidities, and payer type. This study aimed to bridge this evidence gap by reporting contemporary HCRU and costs in patients with CKD across the US health care providers. Methods: Cost and HCRU estimates of CKD and reduced kidney function without CKD (estimated glomerular filtration rate [eGFR]: 60−75 and urine albumin-to-creatinine ratio [UACR]: <30) were derived for US patients included in the DISCOVER CKD cohort study, using linked inpatient and outpatient data from the limited claims-EMR data set (LCED) and TriNetX database. Patients with a history of transplant or undergoing dialysis were not included. HCRU and costs were stratified by CKD severity using UACR and eGFR. Results: Overall health care costs ranged from 42,139 (A3), and from 42,902 (G5) per patient per year (PPPY), demonstrating a considerable early disease burden which continued to increase with declining kidney function. The PPPY costs of later stage CKD were particularly notable for patients with concomitant heart failure (55,735 [A3]). Conclusions: Health care costs and resource use associated with CKD and reduced kidney function pose a substantial burden across health care systems and payers, increasing in line with CKD progression. Early CKD screening, particularly of UACR, paired with proactive disease management may provide both an improvement to patient outcomes and a significant HCRU and cost saving to health care providers
Cardiovascular disease risk assessment in patients with familial Mediterranean fever related renal amyloidosis
Chronic inflammation and proteinuria is a risk factor for cardiovascular disease (CVD) in patients with chronic kidney diseases and rheumatologic disorders. Our aim was to investigate the CVD events (CVDEs) and survival between the patients with FMF-related AA amyloidosis and glomerulonephropathies (GN) to define possible predictors for CVDEs. A prospective follow-up study with FMF-amyloidosis and glomerulonephropathy (GN) was performed and patients were followed for CVDEs. Flow-mediated dilatation (FMD), FGF-23, serum lipid, hsCRP levels, BMI and HOMA were assessed. A Cox regression analysis was performed to evaluate the risk factors for CVDEs. There were 107 patients in the FMF-amyloidosis group and 126 patients with GN group. Forty-seven CVDEs were observed during the 4.2-years follow up; all 28 patients in the FMF-amyloidosis group and 14/19 patients with GN developed CVDEs before the age of 40 (p = 0.002). CVD mortality was 2.8 times higher (95% CI 1.02–7.76) in patients with FMF-amyloidosis. Across both groups, FMD and FGF23 (p < 0.001) levels were independently associated with the risk of CVDEs. Patients with FMF-amyloidosis are at increased risk of early CVDEs with premature mortality age. FGF 23, FMD and hsCRP can stratify the risk of early CVD in patients with FMF-related AA amyloidosis
Circulating proteins as predictors of cardiovascular mortality in endstage renal disease
Introduction: Proteomic profiling of end-stage renal disease (ESRD) patients could lead to improved risk prediction and
novel insights into cardiovascular disease mechanisms. Plasma levels of 92 cardiovascular disease-associated proteins were assessed by proximity extension assay (Proseek Multiplex CVD-1, Olink Bioscience, Uppsala, Sweden) in a discovery cohort of dialysis patients, the Mapping of Inflammatory Markers in Chronic Kidney disease cohort [MIMICK; n = 183, 55% women, mean age 63 years, 46 cardiovascular deaths during follow-up (mean 43 months)]. Significant results were replicated in the incident and prevalent hemodialysis arm of the Salford Kidney Study [SKS dialysis study, n = 186, 73% women, mean age 62 years, 45 cardiovascular deaths during follow-up (mean 12 months)], and in the CKD5-LD-RTxcohort with assessments of coronary artery calcium (CAC)-score by cardiac computed tomography (n = 89, 37% women, mean age 46 years).
Results: In age and sex-adjusted Cox regression in MIMICK, 11 plasma proteins were nominally associated with cardiovascular
mortality (in order of significance: Kidney injury molecule-1 (KIM-1), Matrix metalloproteinase-7, Tumour necrosis
factor receptor 2, Interleukin-6, Matrix metalloproteinase-1, Brain-natriuretic peptide, ST2 protein, Hepatocyte growth
factor, TNF-related apoptosis inducing ligand receptor-2, Spondin-1, and Fibroblast growth factor 25). Only plasma KIM-1
was associated with cardiovascular mortality after correction for multiple testing, but also after adjustment for dialysis
vintage, cardiovascular risk factors and inflammation (hazard ratio) per standard deviation (SD) increase 1.84, 95% CI
1.26–2.69, p = 0.002. Addition of KIM-1, or nine of the most informative proteins to an established risk-score (modified
AROii CVM-score) improved discrimination of cardiovascular mortality risk from C = 0.777 to C = 0.799 and C = 0.823,
respectively. In the SKS dialysis study, KIM-1 predicted cardiovascular mortality in age and sex adjusted models (hazard
ratio per SD increase 1.45, 95% CI 1.03–2.05, p = 0.034) and higher KIM-1 was associated with higher CACscores in the
CKD5-LD-RTx-cohort.
Conclusions Our proteomics approach identified plasma KIM-1 as a risk marker for cardiovascular mortality and coronary
artery calcification in three independent ESRD-cohorts. The improved risk prediction for cardiovascular mortality by plasma
proteomics merit further studies.Swedish Research CouncilSwedish Heart–Lung foundationEuropean Union Horizon 2020 (Grant number 634869)Dalarna UniversityUppsala UniversitySwedish Medical Research CouncilNjurfondenEuropean Union’s Horizon 2020 research and innovation programme, Marie Sklodowska-Curie Grant Agreement no. 722609Publishe
The serum vaspin levels are reduced in Japanese chronic hemodialysis patients
Background: Visceral adipose tissue-derived serine proteinase inhibitor (vaspin) is an adipokine identified in genetically obese rats that correlates with insulin resistance and obesity in humans. Recently, we found that 7% of the Japanese population with the minor allele sequence (A) of rs77060950 exhibit higher levels of serum vaspin. We therefore evaluated the serum vaspin levels in Japanese chronic hemodialysis patients.
Methods: Healthy Japanese control volunteers (control; n = 95, 49.9 +/- 6.91 years) and Japanese patients undergoing hemodialysis therapy (HD; n = 138, 51.4 +/- 10.5 years) were enrolled in this study, and serum samples were subjected to the human vaspin RIA system.
Results: The measurement of the serum vaspin levels demonstrated that a fraction of control subjects (n = 5) and HD patients (n = 11) exhibited much higher levels (> 10 ng/ml; Vaspin(High) group), while the rest of the population exhibited lower levels (< 3 ng/ml; Vaspin(Low) group). By comparing the patients in the Vaspin(Low) group, the serum vaspin levels were found to be significantly higher in the control subjects (0.87 +/- 0.24 ng/ml) than in the HD patients (0.32 +/- 0.15 ng/ml) (p < 0.0001). In the stepwise regression analyses, the serum creatinine and triglyceride levels were found to be independently and significantly associated with the vaspin concentrations in all subjects.
Conclusions: The creatinine levels are negatively correlated with the serum vaspin levels and were significantly reduced in the Japanese HD patients in the Vaspin(Low) group
Methods and rationale of the DISCOVER CKD global observational study
Background: Real-world data for patients with chronic kidney disease (CKD), specifically pertaining to clinical management, metabolic control, treatment patterns, quality of life (QoL) and dietary patterns, are limited. Understanding these gaps using real-world, routine care data will improve our understanding of the challenges and consequences faced by patients with CKD, and will facilitate the long-term goal of improving their management and prognosis. Methods: DISCOVER CKD follows an enriched hybrid study design, with both retrospective and prospective patient cohorts, integrating primary and secondary data from patients with CKD from China, Italy, Japan, Sweden, the UK and the USA. Data will be prospectively captured over a 3-year period from >1000 patients with CKD who will be followed up for at least 1 year via electronic case report form entry during routine clinical visits and also via a mobile/tablet-based application, enabling the capture of patient-reported outcomes (PROs). In-depth interviews will be conducted in a subset of ∼100 patients. Separately, secondary data will be retrospectively captured from >2 000 000 patients with CKD, extracted from existing datasets and registries. Results: The DISCOVER CKD program captures and will report on patient demographics, biomarker and laboratory measurements, medical histories, clinical outcomes, healthcare resource utilization, medications, dietary patterns, physical activity and PROs (including QoL and qualitative interviews). Conclusions: The DISCOVER CKD program will provide contemporary real-world insight to inform clinical practice and improve our understanding of the epidemiology and clinical and economic burden of CKD, as well as determinants of clinical outcomes and PROs from a range of geographical regions in a real-world CKD setting
Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: data from the Swedish Heart Failure Registry.
AIMS: Use of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in real-world heart failure (HF) is poorly characterised. In contemporary patients with HF and type 2 diabetes mellitus (T2DM) we assessed over time SGLT2i use, clinical characteristics and outcomes associated with SGLT2i use. METHODS AND RESULTS: Type 2 diabetes patients enrolled in the Swedish HF Registry between 2016-2018 were considered. We performed multivariable logistic regression models to assess the independent predictors of SGLT2i use and Cox regression models in a 1:3 propensity score-matched cohort and relevant subgroups to investigate the association between SGLT2i use and outcomes. Of 6805 eligible HF patients with T2DM, 376 (5.5%) received SGLT2i, whose use increased over time with 12% of patients on treatment at the end of 2018. Independent predictors of SGLT2i use were younger age, HF specialty care, ischaemic heart disease, preserved kidney function, and absence of anaemia. Over a median follow-up of 256 days, SGLT2i use was associated with a 30% lower risk of cardiovascular (CV) death/first HF hospitalisation (hazard ratio 0.70, 95% confidence interval 0.52-0.95), which was consistent regardless of ejection fraction, background metformin treatment and kidney function. SGLT2i use was also associated with a lower risk of all-cause and CV death, HF and CV hospitalisation, and CV death/myocardial infarction/stroke. CONCLUSION: In a contemporary HF cohort with T2DM, SGLT2i use increased over time, was more common with specialist care, younger age, ischaemic heart disease, and preserved renal function, and was associated with lower mortality and morbidity
Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein
Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity
Endotoxaemia in Haemodialysis: A Novel Factor in Erythropoetin Resistance?
Background/Objectives
Translocated endotoxin derived from intestinal bacteria is a driver of systemic inflammation and oxidative stress. Severe endotoxaemia is an underappreciated, but characteristic finding in haemodialysis (HD) patients, and appears to be driven by acute repetitive dialysis induced circulatory stress. Resistance to erythropoietin (EPO) has been identified as a predictor of mortality risk, and associated with inflammation and malnutrition. This study aims to explore the potential link between previously unrecognised endotoxaemia and EPO Resistance Index (ERI) in HD patients.
Methodology/Principal Findings
50 established HD patients were studied at a routine dialysis session. Data collection included weight, BMI, ultrafiltration volume, weekly EPO dose, and blood sampling pre and post HD. ERI was calculated as ratio of total weekly EPO dose to body weight (U/kg) to haemoglobin level (g/dL). Mean haemoglobin (Hb) was 11.3±1.3 g/dL with a median EPO dose of 10,000 [IQR 7,500–20,000] u/wk and ERI of 13.7 [IQR 6.9–23.3] ((U/Kg)/(g/dL)). Mean pre-HD serum ET levels were significantly elevated at 0.69±0.30 EU/ml. Natural logarithm (Ln) of ERI correlated to predialysis ET levels (r = 0.324, p = 0.03) with a trend towards association with hsCRP (r = 0.280, p = 0.07). Ln ERI correlated with ultrafiltration volume, a driver of circulatory stress (r = 0.295, p = 0.046), previously identified to be associated with increased intradialytic endotoxin translocation. Both serum ET and ultrafiltration volume corrected for body weight were independently associated with Ln ERI in multivariable analysis.
Conclusions
This study suggests that endotoxaemia is a significant factor in setting levels of EPO requirement. It raises the possibility that elevated EPO doses may in part merely be identifying patients subjected to significant circulatory stress and suffering the myriad of negative biological consequences arising from sustained systemic exposure to endotoxin
- …