94 research outputs found

    Charm and beauty of the Large Hadron Collider

    Get PDF
    With the acceleration of lead nuclei in the LHC, heavy-ion physics will enter a new energy domain. One of the main novelties introduced by the 30-fold energy-jump from RHIC to the LHC is the abundant heavy-quark production. After discussing a few examples of physics issues that can be addressed using heavy quarks, we present a selection of results on the expected experimental capability of ALICE, the dedicated heavy-ion experiment at the LHC, in the open-heavy-flavour sector.Comment: 10 pages, 5 figures. Invited talk at Strangeness in Quark Matter (SQM) 2004, Cape Town, South Africa, 15-20 September 2004. Submitted to J. Phys.

    ALICE potential for heavy-flavour physics

    Get PDF
    The Large Hadron Collider (LHC), where lead nuclei will collide at the unprecedented c.m.s. energy of 5.5 TeV per nucleon-nucleon pair, will offer new and unique opportunities for the study of the properties of strongly interacting matter at high energy density over extended volumes. We will briefly explain why heavy-flavour particles are well-suited tools for such a study and we will describe how the ALICE experiment is preparing to make use of these tools.Comment: 6 pages, 3 figures, prepared for the Proceedings of "Strange Quark Matter 2007", Levoca, Slovaki

    Charm quenching in heavy-ion collisions at the LHC

    Get PDF
    D-meson suppression in Pb-Pb collisions at the LHC due to charm quark in-medium energy loss is estimated within a model that describes the available quenching measurements at RHIC. The result is compared to that previously published by the author. The expected sensitivity of the ALICE experiment for studying charm energy loss via fully-reconstructed D^0-meson decays is also presented.Comment: 8 pages, 3 figures. To appear in the proceedings of Hot Quarks 2004: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Taos Valley, New Mexico, 18-24 July 2004. Submitted to J. Phys.

    Measuring beauty production in Pb-Pb collisions at the LHC via single electrons in ALICE

    Full text link
    We present the expected ALICE performance for the measurement of the p_t-differential cross section of electrons from beauty decays in central Pb-Pb collisions at the LHC.Comment: 4 pages, 2 figures, proceeding of poster presentation at "Quark Matter 2005

    Correlations of Heavy Quarks Produced at Large Hadron Collider

    Full text link
    We study the correlations of heavy quarks produced in relativistic heavy ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-anti quark (QQQ\overline{Q}) pairs in pppp collisions at O\cal{O}(αs3\alpha_{s}^{3}). This sets the stage for the identification and study of medium modification of similar correlations in relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, {\it viz.}, jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from prompt initial production at leading order and at next to leading order.Comment: 26 pages, 15 figures. Three new figures added, comparison to experimental data included, abstract and discussion expande

    Rapidity Dependence of J/ψJ/\psi Production at RHIC and LHC

    Full text link
    The motion of charmonium in heavy ion collisions is described by a three dimensional transport equation with initial production and continuous regeneration in hot medium. The observation of apparently stronger J/ψJ/\psi suppression at forward rapidity compared to that at midrapidity, so called J/ψJ/\psi puzzle at RHIC, can well be explained by the competition between the two production mechanisms. At LHC, however, the rapidity dependence of the J/ψJ/\psi production is dominated by the regeneration process.Comment: 4 pages, 2 figure

    Hard probes in heavy ion collisions at the LHC: heavy flavour physics

    Full text link
    We present the results from the heavy quarks and quarkonia working group. This report gives benchmark heavy quark and quarkonium cross sections for pppp and pApA collisions at the LHC against which the AAAA rates can be compared in the study of the quark-gluon plasma. We also provide an assessment of the theoretical uncertainties in these benchmarks. We then discuss some of the cold matter effects on quarkonia production, including nuclear absorption, scattering by produced hadrons, and energy loss in the medium. Hot matter effects that could reduce the observed quarkonium rates such as color screening and thermal activation are then discussed. Possible quarkonium enhancement through coalescence of uncorrelated heavy quarks and antiquarks is also described. Finally, we discuss the capabilities of the LHC detectors to measure heavy quarks and quarkonia as well as the Monte Carlo generators used in the data analysis.Comment: 126 pages Latex; 96 figures included. Subgroup report, to appear in the CERN Yellow Book of the workshop: Hard Probes in Heavy Ion Collisions at the LHC. See also http://a.home.cern.ch/f/frixione/www/hvq.html for a version with better quality for a few plot

    A Comment on Conical Flow Induced by Heavy-Quark Jets

    Full text link
    The suppression of high transverse momentum particles, recently discovered at RHIC, is commonly interpreted as due to parton energy loss. In high energy nuclear collisions, QCD jets would deposit a large fraction of their energy and into the produced matter. The question of how this energy is degraded and whether we can use this phenomenon to probe the properties of the produced matter is now under active discussion. It has been proposed that if this matter, which is now being referred to as a {\em strongly coupled Quark-Gluon Plasma} (sQGP), may behave as a liquid with a very small viscosity. In this case, a very specific collective excitation should be produced, called the ``conical flow'', similar e.g. to the sonic booms generated by the shock waves produced by supersonic planes. The RHIC experiments seem indeed to be obtaining some indication that the production of particles emitted opposite to a high-ptp_t jet may actually be peaked away from the quenched jet direction, at an angle roughly consistent with the direction expected in case a shock wave is produced (i.e. orthogonal to the Mach cone). In this note we speculate that for tagged heavy-quark jets one may observe a shrinkage of the Mach cone at moderate ptp_t. The experimental observation of such an effect would be a very good test for the validity of the whole picture currently emerging from the study of partonic matter in nuclear collisions

    D meson enhancement in pp collisions at the LHC due to nonlinear gluon evolution

    Full text link
    When nonlinear effects on the gluon evolution are included with constraints from HERA, the gluon distribution in the free proton is enhanced at low momentum fractions, x < 0.01, and low scales, Q^2 < 10 GeV^2, relative to standard, DGLAP-evolved, gluon distributions. Consequently, such gluon distributions can enhance charm production in pp collisions at center of mass energy 14 TeV by up to a factor of five at midrapidity, y \sim 0, and transverse momentum p_T -> 0 in the most optimistic case. We show that most of this enhancement survives hadronization into D mesons. Assuming the same enhancement at leading and next-to-leading order, we show that the D enhancement may be measured by D^0 reconstruction in the K^-\pi^+ decay channel with the ALICE detector.Comment: 15 pages, 4 figures, final version accepted by J. Phys.

    Rapidity distributions around mid-rapidity of strange particles in Pb-Pb collisions at 158 AA GeV/c

    Full text link
    The production at central rapidity of K0s, Lambda, Xi and Omega particles in Pb-Pb collisions at 158 A GeV/c has been measured by the NA57 experiment over a centrality range corresponding to the most central 53% of the inelastic Pb-Pb cross section. In this paper we present the rapidity distribution of each particle in the central rapidity unit as a function of the event centrality. The distributions are analyzed based on hydrodynamical models of the collisions.Comment: 15 pages, 10 figure
    corecore