122 research outputs found
Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives
Daylight saving time and acute myocardial infarction: a meta-analysis
Background
The current evidence on the effects of daylight saving time (DST) transitions on major cardiovascular diseases is limited, and available results are conflicting. We carried out the first meta-analysis aimed at evaluating the risk of acute myocardial infarction (AMI) following DST transitions.
Methods
We searched MedLine and Scopus up to December 31, 2018, with no language restriction, to retrieve cohort or case-control studies evaluating AMI incidence among adults (≥18y) in the week following spring and/or autumn DST shifts versus control periods. A summary relative risk of AMI was computed after: (1) spring, (2) autumn, (3) both transitions considered together versus control weeks. Stratified analyses were performed by gender and age. Data were combined using a generic inverse-variance approach.
Results
Seven studies (>115,000 subjects) were included in the analyses. A significantly higher risk of AMI (Odds Ratio: 1.03; 95% CI: 1.01-1.06) was observed in the two weeks following spring or winter DST transitions. The risk increase was however significant only after the spring shift (OR: 1.05; 1.02-1.07), while AMI incidence in the week after winter DST transition was comparable to control periods (OR 1.01; 0.98-1.04). No substantial differences by age or gender emerged.
Conclusions
The risk of AMI increases modestly but significantly following DST transitions, supporting the proposal of DST shifts discontinuation. Additional studies fully adjusting for potential confounders are required to confirm the present findings
Catechols: a new class of carbonic anhydrase inhibitors
Catechols adopt a peculiar binding mode to the CA active site which involves both the zinc bound water molecule and the "deep water"
Antimicrobial and Antibiofilm Activities of Carvacrol, Amoxicillin and Salicylhydroxamic Acid Alone and in Combination vs. Helicobacter pylori: Towards a New Multi-Targeted Therapy
The World Health Organization has indicated Helicobacter pylori as a high-priority pathogen whose infections urgently require an update of the antibacterial treatments pipeline. Recently, bacterial ureases and carbonic anhydrases (CAs) were found to represent valuable pharmacological targets to inhibit bacterial growth. Hence, we explored the underexploited possibility of developing a multiple-targeted anti-H. pylori therapy by assessing the antimicrobial and antibiofilm activities of a CA inhibitor, carvacrol (CAR), amoxicillin (AMX) and a urease inhibitor (SHA), alone and in combination. Minimal Inhibitory (MIC) and Minimal Bactericidal (MBC) Concentrations of their different combinations were evaluated by checkerboard assay and three different methods were employed to assess their capability to eradicate H. pylori biofilm. Through Transmission Electron Microscopy (TEM) analysis, the mechanism of action of the three compounds alone and together was determined. Interestingly, most combinations were found to strongly inhibit H. pylori growth, resulting in an additive FIC index for both CAR-AMX and CAR-SHA associations, while an indifferent value was recorded for the AMX-SHA association. Greater antimicrobial and antibiofilm efficacy of the combinations CAR-AMX, SHA-AMX and CAR-SHA against H. pylori were found with respect to the same compounds used alone, thereby representing an innovative and promising strategy to counteract H. pylori infections
Novel insights on saccharin- and acesulfame-based carbonic anhydrase inhibitors: design, synthesis, modelling investigations and biological activity evaluation
A large library of saccharin and acesulfame derivatives has been synthesised and evaluated against four isoforms of human carbonic anhydrase, the two off-targets hCA I/II and the tumour related isoforms hCA IX/XII. Different strategies of scaffold modification have been attempted on both saccharin as well as acesulfame core leading to the obtainment of 60 compounds. Some of them exhibited inhibitory activity in the nanomolar range, albeit some of the performed changes led to either micromolar activity or to its absence, against hCA IX/XII. Molecular modelling studies focused the attention on the binding mode of these compounds to the enzyme. The proposed inhibition mechanism is the anchoring to zinc-bound water molecule. Docking studies along with molecular dynamics also underlined the importance of the compounds flexibility (e.g. achieved through the insertion of methylene group) which favoured potent and selective hCA inhibition
Open saccharin-based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis > 10 µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298 nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432 nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.</p
Cyclization of acyl thiosemicarbazides led to new Helicobacter pylori α‐carbonic anhydrase inhibitors
The eradication of Helicobacter pylori, the etiologic agent of gastric ulcer and adenocarcinoma, is a big concern in clinics due to the increasing drug resistance phenomena and the limited number of efficacious treatment options. The exploitation of the H. pylori carbonic anhydrases (HpCAs) as promising pharmacological targets has been validated by the antibacterial activity of previously reported CA inhibitors due to the role of these enzymes in the bacterium survival in the gastric mucosa. The development of new HpCA inhibitors seems to be on the way to filling the existing antibiotics gap. Due to the recent evidence on the ability of the coumarin scaffold to inhibit microbial alpha-CAs, a large library of derivatives has been developed by means of a pH-regulated cyclization reaction of coumarin-bearing acyl thiosemicarbazide intermediates. The obtained 1,3,4-thiadiazoles (10-18a,b) and 1,2,4-triazole-3-thiones (19-26a,b) were found to strongly and selectively inhibit Hp alpha CA and computational studies were fundamental to gaining an understanding of the interaction networks governing the enzyme-inhibitor complex. Antibacterial evaluations on H. pylori ATCC 43504 highlighted some compounds that maintained potency on a resistant clinical isolate. Also, their combinations with metronidazole decreased both the minimal inhibitory concentration and minimal bactericidal concentration values of the antibiotic, with no synergistic effect
Synthetic Approaches to Novel Human Carbonic Anhydrase Isoform Inhibitors Based on Pyrrol-2-one Moiety
New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (K-I 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (K-I 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment
The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection
Surgical site infections (SSIs) represent the most common nosocomial infections, and surgical sutures are optimal surfaces for bacterial adhesion and biofilm formation. Staphylococcus spp., Enterococcus spp., and Escherichia coli are the most commonly isolated microorganisms. The aim of this research was to evaluate the antibiofilm activity of a medical device (MD) containing TIAB, which is a silver-nanotech patented product. The antibacterial effect was evaluated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, and E. coli ATCC 25922 by assessing the minimum inhibitory concentration (MIC) by the Alamar Blue\uae (AB) assay. The antibiofilm effect was determined by evaluation of the minimum biofilm inhibitory concentration (MBIC) and colony-forming unit (CFU) count. Subsequently, the MD was applied on sutures exposed to the bacterial species. The antimicrobial and antibiofilm effects were evaluated by the agar diffusion test method, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM). The MIC was determined for S. aureus and E. faecalis at 2 mg/mL, while the MBIC was 1.5 mg/mL for S. aureus and 1 mg/mL for E. faecalis. The formation of an inhibition zone around three different treated sutures confirmed the antimicrobial activity, while the SEM and CLSM analysis performed on the MD-treated sutures underlined the presence of a few adhesive cells, which were for the most part dead. The MD showed antimicrobial and antibiofilm activities versus S. aureus and E. faecalis, but a lower efficacy against E. coli. Surgical sutures coated with the MD have the potential to reduce SSIs as well as the risk of biofilm formation post-surgery
Azobenzenesulfonamide Carbonic Anhydrase Inhibitors as New Weapons to Fight Helicobacter pylori: Synthesis, Bioactivity Evaluation, In Vivo Toxicity, and Computational Studies
Research into novel anti-Helicobacter pylori agents represents an important approach for the identification of new treatments for chronic gastritis and peptic ulcers, which are associated with a high risk of developing gastric carcinoma. In this respect, two series of azobenzenesulfonamides were designed, synthesized, and tested against a large panel of human and bacterial CAs to evaluate their inhibitory activity. In addition, computational studies of the novel primary benzenesulfonamides (4a-j) were performed to predict the putative binding mode to both HpCAs. Then, the antimicrobial activity versus H. pylori of the two series was also studied. The best-in-class compounds were found to be 4c and 4e among the primary azobenzenesulfonamides and 5c and 5f belonging to the secondary azobenzenesulfonamides series, showing themselves to exert a promising anti-H. pylori activity, with MIC values of 4-8 mu g/mL and MBCs between 4 and 16 mu g/mL. Moreover, the evaluation of their toxicity on a G. mellonella larva in vivo model indicated a safe profile for 4c,e and 5c,f. The collected results warrant considering these azobenzenesulfonamides as an interesting starting point for the development of a new class of anti-H. pylori agents
- …