565 research outputs found
Dipolar collisions of polar molecules in the quantum regime
Ultracold polar molecules offer the possibility of exploring quantum gases
with interparticle interactions that are strong, long-range, and spatially
anisotropic. This is in stark contrast to the dilute gases of ultracold atoms,
which have isotropic and extremely short-range, or "contact", interactions. The
large electric dipole moment of polar molecules can be tuned with an external
electric field; this provides unique opportunities such as control of ultracold
chemical reactions, quantum information processing, and the realization of
novel quantum many-body systems. In spite of intense experimental efforts aimed
at observing the influence of dipoles on ultracold molecules, only recently
have sufficiently high densities been achieved. Here, we report the observation
of dipolar collisions in an ultracold molecular gas prepared close to quantum
degeneracy. For modest values of an applied electric field, we observe a
dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold
chemical reactions. We find that the loss rate has a steep power-law dependence
on the induced electric dipole moment, and we show that this dependence can be
understood with a relatively simple model based on quantum threshold laws for
scattering of fermionic polar molecules. We directly observe the spatial
anisotropy of the dipolar interaction as manifested in measurements of the
thermodynamics of the dipolar gas. These results demonstrate how the long-range
dipolar interaction can be used for electric-field control of chemical reaction
rates in an ultracold polar molecule gas. The large loss rates in an applied
electric field suggest that creating a long-lived ensemble of ultracold polar
molecules may require confinement in a two-dimensional trap geometry to
suppress the influence of the attractive dipolar interactions
Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function
Single-molecule localization microscopy, typically based on total internal reflection illumination, has taken our understanding of protein organization and dynamics in cells beyond the diffraction limit. However, biological systems exist in a complicated three-dimensional environment, which has required the development of new techniques, including the double-helix point spread function (DHPSF), to accurately visualize biological processes. The application of the DHPSF approach has so far been limited to the study of relatively small prokaryotic cells. By matching the refractive index of the objective lens immersion liquid to that of the sample media, we demonstrate DHPSF imaging of up to 15-μm-thick whole eukaryotic cell volumes in three to five imaging planes. We illustrate the capabilities of the DHPSF by exploring large-scale membrane reorganization in human T cells after receptor triggering, and by using single-particle tracking to image several mammalian proteins, including membrane, cytoplasmic, and nuclear proteins in T cells and embryonic stem cells.We thank the Royal Society for the University Research Fellowship of S.F.L. (UF120277). This work was kindly funded by the Engineering and Physical Sciences Research Council (EP/M003663/1) and by the Wellcome Trust
Laser Cooling of Optically Trapped Molecules
Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap
(ODT) and subsequently laser cooled within the trap. Starting with
magneto-optical trapping, we sub-Doppler cool CaF and then load CaF
molecules into an ODT. Enhanced loading by a factor of five is obtained when
sub-Doppler cooling light and trapping light are on simultaneously. For trapped
molecules, we directly observe efficient sub-Doppler cooling to a temperature
of . The trapped molecular density of
cm is an order of magnitude greater than in the initial sub-Doppler
cooled sample. The trap lifetime of 750(40) ms is dominated by background gas
collisions.Comment: 5 pages, 5 figure
The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
HIV research in Australia: linking basic research findings with clinical and public health outcomes
Despite a population of only 20 million and sustained low prevalence of HIV infection in Australia, Australian researchers have provided many substantial original findings to the fields of HIV pathogenesis, treatment and prevention. More recently, Australian clinicians and scientists have turned their attention to assisting other countries in developing effective responses, particularly within the Asia-Pacific region. It is therefore fitting that the 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention will be held in Sydney in July 2007. The meeting is expected to attract over 5000 participants and will have a dynamic and innovative programme within the three major themes of HIV basic science, clinical research and biomedical prevention
Differences in Accumulation and Virulence Determine the Outcome of Competition during Tobacco etch virus Coinfection
Understanding the evolution of virulence for RNA viruses is essential for developing appropriate control strategies. Although it has been usually assumed that virulence is a consequence of within-host replication of the parasite, viral strains may be highly virulent without experiencing large accumulation as a consequence of immunopathological host responses. Using two strains of Tobacco etch potyvirus (TEV) that show a negative relationship between virulence and accumulation rate, we first explored the evolution of virulence and fitness traits during simple and mixed infections. Short-term evolution experiments initiated with each strain independently confirmed the genetic and evolutionary stability of virulence and viral load, although infectivity significantly increased for both strains. Second, competition experiments between hypo- and hypervirulent TEV strains have shown that the outcome of competition is driven by differences in replication rate. A simple mathematical model has been developed to analyze the dynamics of these two strains during coinfection. The model qualitatively reproduced the experimental results using biologically meaningful parameters. Further analyses of the model also revealed a wide parametric region in which a low-fitness but hypovirulent virus can still outcompete a high-fitness but hypervirulent one. These results provide additional support to the observation that virulence and within-host replication may not necessarily be strongly tied in plant RNA viruses
- …