20,354 research outputs found

    An interferometric technique for B/A measurement

    Get PDF
    An isentropic phase method is described for measuringin vitro the acoustic nonlinearity parameterB/A of several aqueous buffers, protein solutions, lipid oils, and emulsions. The technique relies upon the use of an acoustic interferometer to measure the small changes in sound speed that accompany a rapid hydrostaticpressure change of between one and two atmospheres. Average accuracies of 0.85% are attainable with this method

    Dipolar coordinates

    Get PDF
    Derivation of dipolar coordinates and basic vector formulas in dipolar coordinate system - application to magnetohydrodynamic problem

    Measurement of pressure and assessment of cavitation for a 22.5-kHz intra-arterial angioplasty device

    Get PDF
    This study was performed to understand better the mechanisms of action of an (22.5 kHz) ultrasonic wire catheter device used to remove atheromatous plaque in diseased blood vessels (ultrasonic angioplasty). During a clinical procedure, the wire acts as an acoustic waveguide to transfer acoustic energy from a generator outside the body to the ball tip of the wire, which is inserted in the blood vessel. The acoustic field radiated by the vibrating ball tip (1.5- to 3.0-mm diameter), was mapped in a relatively large (600 L) water tank and compared to the field from a well-characterized simple source. A dipolelike radiation pattern due to the translating ball tip was observed. At low power settings, standing wave effects in a smaller cylindrical volume (200-mm diameter, 350-mm height), which was used to simulate anthropometric dimensions, increase relative to the larger tank measurements. The standing wave ratio is dependent upon the pc characteristics of the medium and the dimensions of the volume, rather than on the absorption at this frequency. At high power-settings of the device, cavitation at the tip of the wire was measured using a 20-MHz passive cavitation detection scheme

    Facilities for meteorological research at NASA Goddard/Wallops Flight Facility

    Get PDF
    The technical characteristics of the Atmospheric Sciences Research Facility, the improvements being made to the instrumentation there which will enhance its usefulness in atmospheric research, and several of the on-going research programs are described. Among the area of atmospheric research discussed are clouds and precipitation, lightning, ozone, wind, and storms. Meteorological instruments including Doppler radar, spectrophotometers, and ozone sensors are mentioned. Atmospheric research relevant to aircraft design and COMSTAR communication satellites is briefly discussed

    Tracking and Orbit-Determination Program of the Jet Propulsion Laboratory

    Get PDF
    The lunar-probe tracking program at the Jet Propulsion Laboratory has two prime objectives: (1) provide real-time predictions of the direction of the probe from various observation stations; (2) establish a reliable trajectory corresponding to the actual flight path of the probe. The tracking program, although developed for use with lunar probes, can be used for interplanetary probes if certain modifications are made. The program, as developed for the IBM 704 digital computer, has two distinct phases. First, the equations of motion and the variational equations are integrated to each observation time where the elements of the equation A (sub u) equals b [linearization of the maximum likelihood equations] are computed. The second phase is concerned with the solution of a specified subset of A (sub u) equals b. Flexibility and ease of operation have been major objectives in writing the 704 program. The number of data points and tracking stations that may be used is limited only by computing time and core storage. Input formats and operating instructions are presented for utilizing the various computational options available in the program

    Evolution of a Primordial Black Hole Population

    Get PDF
    We reconsider in this work the effects of an energy absorption term in the evolution of primordial black holes (hereafter PBHs) in the several epochs of the Universe. A critical mass is introduced as a boundary between the accreting and evaporating regimes of the PBHs. We show that the growth of PBHs is negligible in the Radiation-dominated Era due to scarcity of energy density supply from the expanding background, in agreement with a previous analysis by Carr and Hawking, but that nevertheless the absorption term is large enough for black holes above the critical mass to preclude their evaporation until the universe has cooled sufficiently. The effects of PBH motion are also discussed: the Doppler effect may give rise to energy accretion in black-holes with large peculiar motions relative to background. We discuss how cosmological constraints are modified by the introduction of the critical mass since that PBHs above it do not disturb the CMBR. We show that there is a large range of admissible masses for PBHs above the critical mass but well below the cosmological horizon. Finally we outline a minimal kinetic formalism, solved in some limiting cases, to deal with more complicated cases of PBH populationsComment: RevTex file, 8 pp., 3 .ps figures available upon request from [email protected]

    Semi-Static Hedging Based on a Generalized Reflection Principle on a Multi Dimensional Brownian Motion

    Full text link
    On a multi-assets Black-Scholes economy, we introduce a class of barrier options. In this model we apply a generalized reflection principle in a context of the finite reflection group acting on a Euclidean space to give a valuation formula and the semi-static hedge.Comment: Asia-Pacific Financial Markets, online firs
    corecore