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I INTRODUCTION 

I n t e r e s t  i n  t h e  r e f r a c t o r y  carb ides  has increased  i n  r ecen t  years 

i n  a n t i c i p a t i o n  of many new a p p l i c a t i o n s  r e q u i r i n g  t h e  u s e  of super-  

r e f r a c t o r i e s .  In  t h e  course  of research  and development work on these  

ma te r i a l s ,  however, d i f f i c u l t i e s  have been encountered i n  a t t a i n i n g  and 

reproducing d e s i r e d  phys ica l  p r o p e r t i e s .  L i t t l e  i s  known of u l t i m a t e  

i n t r i n s i c  phys i ca l  p r o p e r t i e s  or t h e  in f luences  of changes i n  s t o i c h i o -  

metry, impur i t i e s ,  and g r a i n  boundaries on t h e s e  p r o p e r t i e s .  To g e t  t h i s  

type of information,  s i n g l e  c r y s t a l s  of va r ious  ca rb ide  compositions 

would be of g r e a t  va lue ,  A t  t h e  p r e s e n t  t i m e ,  t he  only  c r y s t a l s  r e a d i l y  

a v a i l a b l e  are of t i t an ium carbide,  grown by t h e  Verneui l  process ,  and 

l i t t l e  is  known of t h e i r  s t r u c t u r e  and p e r f e c t i o n .  

S tanford  Research I n s t i t u t e  has,  t he re fo re ,  been engaged by t h e  

Nat iona l  Aeronaut ics  and Space Adminis t ra t ion t o  i n v e s t i g a t e  t h e  appl ica-  

t i o n  of new techniques and procedures f o r  t h e  growth of s i n g l e  c r y s t a l s  

of  tantalum carb ide ,  hafnium carbide,  and s o l i d  s o l u t i o n s  of t h e  two, The 

new techniques being inves t iga t ed  f a l l  i n t o  two c l a s s e s :  f i r s t ,  t h e  

a p p l i c a t i o n  of r e c e n t l y  developed methods f o r  l i q u i d  metal  s o l u t i o n  

growth of c r y s t a l s  and, second, the  u t i l i z a t i o n  of new hea t ing  methods 

f o r  Verneui l  c r y s t a l  growth. The l a t t e r  new h e a t i n g  methods inc lude  r-f  

plasma hea t ing  and a-c a r c  melting. A f t e r  an  ex tens ive  f e a s i b i l i t y  

i n v e s t i g a t i o n ,  inc luding  cons iderable  experimental  work, t he  r- f  plasma 

h e a t i n g  method has been dropped. Work cont inues  on t h e  s o l u t i o n  growth 

and a r c  mel t ing  Verneui l  methods. 



I1 SUMMARY AND CONCLUSIONS 

Construction of the triple-electrode arc melting furnace was essen- 

tially completed during this period. This includes fabrication and 

assembly of the arc melting furnace proper and the connecting graphite 

resistance heater for controlling the cooling rate of the boule. The 

power supply and other major components were received and assembled. A s  

a result of start-up tests, several modifications and adjustments were 

made. Remaining modifications will be completed early in the next period. 

Thermochemical factors affecting the solution growth of TaC were 

considered in detail. It was concluded that moderately low-solubility 

solvents (high activity coefficients) are desired when both excess free 

carbon and excess free tantalum are present in the melt system. This is 

necessary in order to limit the degree of supersaturation with respect to 

equilibrium with TaC. Excessive supersaturation is believed to cause 

uncontrolled nucleation and leadrto rapid precipitation of many small 

crystals rather than growth of a few large crystals. The use of elemental 

carbon and tantalum metal sources for nutrients has been termed irrever- 

sible o r  nonequilibrium solution growth. A thermal gradient is not 

required. 

When excess free tantalum and carbon are absent from the melt system 

and another sample of TaC is used as the nutrient, the chemical activities 

of carbon and tantalum in the solution in equilibrium with the nutrient 

are considerably diminished, Solvents with low activity coefficients are 

required in order to compensate for the very low activities and keep the 

concentration of carbon and tantalum at an adequate level. If the reactant 

concentrations are too low, solution diffusion will be too slow and crystal 

growth rates will be retarded. Thus, high solubility solvents are desired 

when free carbon and free tantalum are excluded. This latter type of melt 

system is termed reversible or equilibrium solution growth of TaC and 

requires a thermal gradient in the melt. It is worth noting that the 

slowest growth rates are expected when a TaC nutrient is combined with a 

separate high activity source of only =of the reactants (either tanta- 

lum or  carbon). 

2 
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Small tantalum carbide crystals were grown in several solution 

growth experiments. Many of these experiments were initial investiga- 

tions of new solvent systems. Some experiments were performed in which 

polycrystalline TaC was used as the only nutrient by employing A 1 , 0 ,  

crucibles in lieu of graphite and omitting additions of free tantalum 

metal to the melt. 

3 



I11 CRYSTAL GROWTH STUDIES 

Most of the work during this period was concentrated on: (1) 

assembling and testing the three-electrode a-c arc melting furnace for 

melt growth of crystals, (2) analyzing thermodynamic and kinetic factors 

affecting the selection of systems f o r  solution growth of TaC, and ( 3 )  

performing crystal growth experiments and solubility experiments for 

solution growth of TaC. 

A. Melt Growth 

Experimental work on the application of plasma fusion for melt 

growth of crystals was terminated at the end of last quarter. The 

plasma method had not shown sufficient promise for attaining the 

required high temperatures. During this quarter, the three-electrode 

a-c arc furnace, including the graphite resistance after-heater used to 

control cooling of the boule and the powder feed system, was assembled. 

Major auxiliary components and power supply units were received and 

installed. A photograph of this furnace and some of its associated 

apparatus is shown in Fig. 1. 

In early tests of the arc melting furnace, it became apparent that 

several alterations would have to be made in the system. These altera- 

tions were almost impossible to predict until actual operation of the 

complete unit had been accomplished. The resistivity of the 12-segment 

graphite after-heater element was slightly high f o r  the 14-volt, 1500- 

ampere power transformer available, so the desired temperature of 2300- 

250OoC could not be reached. 

consisting of 8 segments instead of 12, was designed. Upon testing, i 

was found that the desired temperatures could be reached easily within 

the limitations of the power supply. 

A new thinner-walled graphite element, 

During this period, it was also found that the existing water coo 

ing system could not dissipate all of the heat being conducted to the 

walls of the furnace when operating at full power. This problem was 

solved by placing flow control valves on each cooling circuit so that 

maximum flow could be maintained in the hottest zones. The interior 

4 
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FIG. 1 TRIPLE ELECTRODE a-c ARC MELTING FURNACE 
FOR VERNEUIL CRYSTAL GROWTH 
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shielding of the system was also modified to provide greater insulation 

of the furnace walls from the graphite element. These alterations 

enabled operation of the furnace f o r  long periods at maximum tempera- 

tures without overheating any part of the system. 

The power supply for the triple-electrode arc-melting system has 

been installed and is operating satisfactorily. This a-c arc power 

supply consists of three separately variable saturable-core reactors 

operating from a single phase line and delivering 5 to 30 volts to each 

electrode. The three electrodes arc directly to the seed crystal. 

The powder introduction system has been installed and tested and 

seems to be operating satisfactorily. Some modifications to the system 

were made so that the furnace could be evacuated with the powder system 

in place and ready for operation. 

A more efficient vacuum system for the furnace is in the process of 
being installed. With this new system, it will be possible to bake out 

the new graphite element and the graphite blanket insulation more com- 

pletely to clean out the furnace system in preparation for crystal grow- 

ing. 

Several test runs were made, but only with the objective of testing 

and evaluating furnace and powder feed systems. Crystal growth was not 

attempted. 

B. Solution Growth 

During this quarter and previous quarters, a number of liquid-metal 

and alloy compositions were found to be solvents for tantalum and carbon, 

permitting growth of TaC. During this quarter, additional consideration 

was given to thermodynamic and kinetic factors affecting solution growth 

of TaC, with particular emphasis on increasing crystal size. This work 

included a literature survey of thermodynamic properties, and directed 

solution growth experiments. 

1. Thermodvnamic Considerations in Svstem Selection 

A discussion of some thermochemical factors that may affect the 

growth of TaC crystals follows. The argument is limited to TaC in order 

6 



t o  g a i n  c l a r i t y  by us ing  a s p e c i f i c  system. 

c l u s i o n s  and q u a l i t a t i v e  r e s u l t s  should be v a l i d  f o r  HfC. 

However, t h e  gene ra l  con- 

Most of  t h e  s o l u t i o n  growth experiments conducted thus f a r  have 

involved (1) a s o l v e n t  metal, ( 2 )  excess  tantalum metal, and ( 3 )  carbon 

from a g r a p h i t e  con ta ine r ,  as t h e  s t a r t i n g  m a t e r i a l s .  I n  genera l ,  t h i s  

i s  no t  a s u f f i c i e n t l y  s p e c i f i e d  s y s t e m  t o  be i n  equi l ibr ium, and r e a c t i o n  

w i l l  proceed i r r e v e r s i b l y  a t  e leva ted  temperatures ,  d i s s o l v i n g  tantalum 

and carbon and p r e c i p i t a t i n g  TaC. Provided t h a t  t h e  g r a p h i t e  c r u c i b l e  

i s  l a rge ,  t h e  r e a c t i o n  w i l l  cont inue u n t i l  an i n s i g n i f i c a n t  amount of 

tantalum, d i s so lved  i n  the  so lu t ion ,  remains. 

Tantalum ca rb ide  c r y s t a l s  can a l s o  be grown under equ i l ib r ium 

( r e v e r s i b l e )  cond i t ions  i f  a TaC n u t r i e n t  and thermal  g r a d i e n t  a re  

employed. Equi l ibr ium growth r equ i r e s  e l imina t ion  of e i t h e r  t h e  excess  

tantalum metal from t h e  m e l t  charge or s u b s t i t u t i o n  of an  i n e r t  c r u c i b l e  

f o r  t h e  g r a p h i t e  c r u c i b l e .  When a s e p a r a t e  source  of e i t h e r  r e a c t a n t  

i s  excluded from t h e  m e l t  system, t h e  chemical a c t i v i t y  of t h a t  r e a c t a n t  

i n  t h e  l i q u i d  metal  s o l u t i o n  w i l l  depend on t h e  TaC e q u i l i b r i a :  

TaC ( s )  K, 2 Ta (C) + C (C) ( 1) 

and ( aTa) (aC)  = K, ( 2 )  

where " a " i s  t h e  chemical a c t i v i t y .  I f  tantalum metal  i s  no t  inc luded  

i n  t h e  m e l t  charge but  a carbon c r u c i b l e  i s  used, then a = K, and 

a = 1. If tantalum i s  not  included i n  t h e  m e l t  charge and an i n e r t  

c r u c i b l e  i s  used, t h e  carbon and tantalum a c t i v i t i e s  w i l l  be interme- 

d i a t e  between a = 1 and a = K,.  I n  t h e  u n l i k e l y  c o n d i t i o n  t h a t  t h e  

= aC = ~ , l / 2 .  a c t i v i t y  c o e f f i c i e n t s  (7) a r e  equal, 

V a r i a t i o n s  i n  equ i l ib r ium cons tan ts  or a c t i v i t y  products  wi th  tempera- 

t u r e  ( f r e e  energy data)  a r e  shown for s e v e r a l  carb ides '  i n  F ig .  2 .  A s  

can be seen i n  Fig.  2 ,  the  tantalum and carbon a c t i v i t i e s  are s e v e r a l  

o r d e r s  lower when TaC i s  used as t h e  n u t r i e n t  i n  l i e u  of a f r e e  tantalum 

or a f r e e  carbon source,  r e spec t ive ly .  The va lue  of K, f o r  TaC a t  

1500°C i s  3.5 x 

Ta  
C 

i i 
then a YTa = YC, T a  

Tantalum and carbon a c t i v i t i e s  maintained du r ing  growth of TaC a t  

1 5 O O 0 C  under several  cond i t ions  a r e  shown i n  Table  I .  

t h i s  t a b l e  i s  t o  i n d i c a t e  t h e  wide v a r i a t i o n  i n  a c t i v i t i e s  t h a t  w i l l  

o ccu r  depending on whether s epa ra t e  tantalum and carbon sources  are 

The purpose of 

7 
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Table I 

Tantalum Activity Carbon Activity 
Me1 t System 

Initial Equilibrium Initial Equilibrium 

Excess tantalum 1 1 12- aT a>> 3 . 5 ~ 1 0 - ~  
and carbon 
crucible 3.5~10 

TaC nutrient and 1 1 3. ~xIO-' 3. 5x10q5 
carbon crucible 

- 5  f- 

~ ~ ~ ~ 

-3* -3* 
TaC nutrient and 5.9~10-~* 5.9~10 -3* 5.9~10 5.9x10 
inert crucible 

TANTALUM AND CARBON ACTIVITIES DURING GROWTH 
OF TaC AT 15OO0C 

Growth 
Condition 

irrever- 
sible 

reversible 
( thermal 
gradient ) 

reversible 
(thermal 
gradient ) 

fIf enough tantalum metal is added t o  the melt to saturate it, than a = 1. 

*Provided that Y T ~  = 

Ta The tantalum activity will be reduced for smaller additions. 

YC 

present o r  are not present inthe melt system. Although activity coeffi- 

cients are unknown for tantalum in any liquid metal, the concentrations 

of tantalum and carbon are related to their activities, 

c = ai/Yi, i (3) 

and a corresponding large difference in concentrations of tantalum and 

carbon will occur between the melt systems with and without separate 

tantalum and carbon sources. 

Since the goal of this investigation is to grow large crystals, it 

appears desirable to limit the supersaturation (excess concentration) of 

tantalum o r  carbon with respect to  TaC in order to prevent excessive 

nucleation. If both excess tantalum and excess carbon are present in 

the melt system (irreversible case), a solvent with low solubility of 

one or  both reactants is required to prevent excessive supersaturation. 

Conversely, if a TaC nutrient is used without a tantalum source (rever- 

sible case), a solvent with a high tantalum solubility (low activity 

9 



c o e f f i c i e n t )  i s  r equ i r ed  t o  increase  t h e  tantalum concen t r a t ion  t o  a high 

enough l e v e l  t o  s ecu re  adequate mass t r a n s p o r t  r a t e s  i n  t h e  s o l u t i o n .  A 

f u r t h e r  i n c r e a s e  i n  t h e  tantalum concen t r a t ion  i n  s o l u t i o n  can be secured 

by s u b s t i t u t i n g  an i n e r t  c r u c i b l e  f o r  t h e  carbon c r u c i b l e  ( see  Table  I ) .  

I n  e f f e c t ,  a s  t he  carbon a c t i v i t y  i s  lowered, t h e  tantalum a c t i v i t y ,  and 

concent ra t ion ,  are  increased  to maintain t h e  equ i l ib r ium cons tan t  K, .  

This  extreme d i f f e r e n c e  i n  tantalum s o l u b i l i t y  i s  requi red  t o  compensate 

f o r  t he  l a r g e  d i f f e r e n c e  i n  tantalum a c t i v i t i e s ,  ca lo-', between t h e  

equ i l ib r ium and nonequilibrium melt s y s t e m s .  What i s  des i r ed  i n  both 

m e l t  systems is  a r e a c t a n t  concent ra t ion  t h a t  i s  very low but  n o t  t oo  

low t o  permit  growth a t  p r a c t i c a l  rates. 

Some a d d i t i o n a l  cons ide ra t ions  f o r  t h e  growth of TaC c rys t a l s  

i r r e v e r s i b l y  from d i l u t e  s o l u t i o n s  and r e v e r s i b l y  us ing  a TaC n u t r i e n t  

are contained i n  t h e  fo l lowing  sec t ions .  

a .  Low S o l u b i l i t y  Solvents  f o r  I r r e v e r s i b l e  Growth of  TaC 

Almost without  exception, h ighe r  temperatures  f avor  h ighe r  

s o l u b i l i t i e s .  This  i s  because t h e  en t ropy  of t h e  s o l u t i o n  i s  g r e a t e r  

than  t h a t  of t h e  segrega ted  s o l i d  phases .  Therefore  an i n c r e a s e  i n  t e m -  

p e r a t u r e  causes  a decrease  i n  chemical p o t e n t i a l  of t h e  so lu t e ,  which 

can only  be o f f s e t  by increased  s o l u t i o n  of t h e  s o l u t e  component. Since,  

f o r  t h e  i r r e v e r s i b l e  case, moderately low s o l u b i l i t i e s  a r e  being sought,  

an  examination of tantalum and carbon s o l u b i l i t i e s  near  t h e  mel t ing  

p o i n t s  of s e v e r a l  l i q u i d  meta ls  provides  a guide t o  u s e f u l  so lven t  s y s -  

t e m s . ' - *  Tantalum s o l u b i l i t y  da ta  a r e  presented  i n  Table 11, and 

carbon s o l u b i l i t y  d a t a  a r e  shown i n  Table 111. 

I t  appears  t h a t  t h e  t r a n s i t i o n  metals are  e i t h e r  too  r e f r a c -  

t o r y  or have h igh  s o l u b i l i t i e s  f o r  tantalum and carbon. Lower so lu-  

b i l i t i e s  a re  expected i n  meta ls  from groups IB, I I B ,  I I I A ,  IVA, and VA. 

I n  most cases t h e  s o l u b i l i t y  w i l l  probably be too  low. This  c o n d i t i o n  

has  a l r e a d y  been observed wi th  t i n .  The e f f e c t i v e  so lven t  p r o p e r t i e s  

ob ta ined  wi th  a b ina ry  m e l t  conta in ing  a s o l v e n t  i n a c t i v e  metal, e.g. ,  

t i n ,  and a s o l v e n t  a c t i v e  metal, e .g . ,  i ron ,  are probably too  complex 

f o r  a n a l y s i s  or even specu la t ion  wi thout  experimental  da t a .  W e  have 

observed exper imenta l ly  t h a t  the 10% i r o n  and 90% t i n  a l l o y  i s  an a c t i v e  

10 



Table I1 

Solvent 

A 1 um i num 

Iron 

Nickel 

Silicon 

Tin 

TANTALUM SOLUBILITIES mAR MELTING 
POINTS OF LIQUID METALS2-* 

Tantalum Source Temperature Tantalum So lub i 1 i t y 
(Wt $J) 

2680 OC 0.15 TaAl 

1534OC >20 TaFe, 

1453 OC >40 TaNi, 

1405OC > 6  TaSi, 

Unknown l o w  

Table I11 

CARBON SOLUBILITIES IN LIQUID METALS2-4 

Solvent 

Chromium 

Cobalt 

Copper 

Iron 

Molybdenum 

Nickel 

Silicon 

Aluminum 

Tin 

Carbon Solubility 
(Wt $) 

3 .O 

2.9 

<.001 ( 14OO0C) 

4.26 

- 3.5 
2.1 

3-4 (23OOOC) 
2.5 x (1413OC) 

Unknown low 

Unknown low 

Eutectic Temperature 
( "c) 

1498 

1300 

-- 

1153 

2200 

13 18 

14 13 

-- 

-- 
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s o l v e n t  f o r  carbon and tantalum. Review of t he  l i t e r a t u r e  i s  cont inuing  

i n  o rde r  t o  ga in  any a v a i l a b l e  add i t iona l  in format ion  on carbon and 

tantalum s o l u b i l i t i e s  i n  l i q u i d  metals.  

b. Equi l ibr ium Growth, Using a TaC Nut r i en t  and a Thermal 
Gradient  

I f  TaC is t h e  s o l e  source f o r  both tantalum and carbon i n  so lu-  

t i o n ,  then t h e i r  concen t r a t ions  must be equal  i n  o r d e r  t o  main ta in  a mass 

balance r e g a r d l e s s  of d i f f e r e n c e s  i n  t h e i r  r e s p e c t i v e  a c t i v i t y  c o e f f i -  

c i e n t s .  The c o r o l l a r y  t o  t h i s  i s  t h a t  t h e i r  a c t i v i t i e s  need no t  be equal .  

The a c t i v i t y  product  ( a  ) ( a  ),  and not  t h e  i n d i v i d u a l  a c t i v i t i e s ,  i s  

governed by the  TaC equ i l ib r ium cons tan t  K, .  A c t i v i t y  c o e f f i c i e n t s  of 

carbon i n  s e v e r a l  l i q u i d  meta ls  have been determined, bu t  no a c t i v i t y  

c o e f f i c i e n t  d a t a  f o r  tantalum or hafnium were found dur ing  a l i t e r a t u r e  

sea rch .  The a c t i v i t y  c o e f f i c i e n t  of zirconium5 i n  l i q u i d  i r o n  is 

y,, = .011. The a c t i v i t y  c o e f f i c i e n t  of carbon i n  l i q u i d  i r o n  is 

Yc 4 4 .  

s y s t e m  and p r e d i c t s  Y 
carbon i n  l i q u i d  i r o n  can be ca l cu la t ed .  This  was done and t h e  r e s u l t s  

are graphed i n  F ig .  3 .  Calculated va lues  based on use  of an i n e r t  

c r u c i b l e  are compared wi th  values based on us ing  a g r a p h i t e  c ruc ib l e ;  

ac = 1. 

tanta lum s o l u b i l i t y ,  r e spec t ive ly ,  when a g r a p h i t e  c r u c i b l e  i s  employed. 

Th i s  i s  the  equ i l ib r ium s i t u a t i o n  without  f r e e  tantalum a d d i t i o n s .  Two 

values  of  t h e  tantalum a c t i v i t y  c o e f f i c i e n t  a r e  used, YTa = .01 

YTa = 1. 

m e l t  temperatures .  

t h a t  a s o l u b i l i t y  approaching I$ is  d e s i r a b l e  t o  o b t a i n  reasonable  

growth rates wi th  t h e  thermal  g rad ien t  method. 

C Ta 

I f  one ignores  i n t e r a c t i o n s  i n  t h e  t e r n a r y  iron-carbon-tantalum 

then concen t r a t ions  of tantalum and 
Ta = 'Zr' 

The upper and lower curves r ep resen t  t h e  carbon s o l u b i l i t y  and 

and 

I n  both cases t h e  tantalum s o l u b i l i t y  i s  below 14 a t  p r a c t i c a l  

Our experience wi th  S i c  c r y s t a l  growth6 has  shown 

Higher tantalum s o l u b i l i t i e s  can be obta ined  by e l imina t ing  

Y, = .04), s o l u b i l i t i e s  ''ra c t h e  g r a p h i t e  c r u c i b l e .  Assuming y = .01 or 
Ta 

w e l l  over  1% are obta ined  a t  reasonable  temperatures .  Consequently, 

t h e  use of i r o n  as a so lven t  f o r  TaC appears  f e a s i b l e ,  provided t h a t  

a nongraph i t i c  c r u c i b l e  i s  used. 
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A review of  t h e  l i t e r a t u r e  d i sc losed  s t u d i e s  of  t he  e f f e c t  of 

a d d i t i o n a l  metals  on carbon s o l u b i l i t y  i n  i r o n  t e r n a r y  sys t ems .  D a t a  on 

coba l t ,  ' manganese, chromium, and s i l i c o n ,  'O -"  have been r epor t ed .  

The r e s u l t s  are summarized i n  Table I V .  The chromium s tudy  was con- 

ducted us ing  a s o l i d  phase, aus t en i t e ,  but  i t  i n d i c a t e s  t h a t  chromium 

probably inc reases  t h e  carbon s o l u b i l i t y  i n  l i q u i d  i r o n .  Manganese does 

increase t h e  carbon s o l u b i l i t y  i n  l i q u i d  i ron ,  as i s  shown i n  Fig.  4 .  

Table I V  

EFFECT OF ADDITIONAL METALS ON CARBON 
SOLUBILITY I N  L I Q U I D  IRON 

Ternary Alloys 

Fe-C-Co ( s o l i d )  

Fe-C-Mn ( l i q u i d )  

Fe-C-Cr ( s o l i d )  

Fe-C-Si ( l i q u i d )  

E f f e c t  of Addi t iona l  Metal on Carbon Content 

For a f i x e d  carbon a c t i v i t y  
coba l t  dec reases  t h e  carbon content  

For a f i x e d  carbon a c t i v i t y  
manganese inc reases  t h e  carbon content  

For a f i x e d  carbon a c t i v i t y  
chromium inc reases  t h e  carbon con ten t  
i n  austenTiT(%iEOc) 

For a f i x e d  carbon a c t i v i t y  
s i l i c o n  dec reases  the  carbon con ten t  

c .  I n e r t  Cruc ib les  f o r  Equi l ibr ium Growth of TaC 

N i t r i d e s  and borides ,  p a r t i c u l a r l y  BN, A I N ,  and BN-TiB2, a r e  

be ing  considered a s  i n e r t  c r u c i b l e s  f o r  l i q u i d  meta ls .  The s t a b i l i t i e s  

of some n i t r i d e  c r u c i b l e  ma te r i a l s  a r e  compared wi th  those of TaN and 

Fe,N i n  F ig .  5 .  These va lues  i n d i c a t e  t h a t  on ly  A 1 N  could be considered 

f u r t h e r  as a c r u c i b l e  materia1,because of t h e  favored formation of TaN. 

Because of t he  h igh  c o s t  of n i t r i d e  c r u c i b l e s ,  ox ide  c ruc ib l e s ,  p a r t i -  

c u l a r l y  of A 1 , 0 3  a r e  being used f o r  i n i t i a l  s t u d i e s .  A d e t a i l e d  a n a l y s i s  

of t h e  chemical r e a c t i o n  between A 1 2 0 3  and t h e  proposed iron-tantalum- 

carbon m e l t  i s  necessary .  

which i s  h igher  than temperatures a t  which m e l t  experiments a r e  l i k e l y  

t o  be conducted. The l i k e l y  r eac t ions  a r e :  

Consider t he  s i t u a t i o n  a t  1727OC (2000°K), 

14 
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( 4 )  

( 5 )  

( 6) 

K 
1/2 Al,O, + 3/2 Fe (2) z a  3/2 FeO + A 1  (2) 

1/2 A 1 2 0 3  + 3 / 5  Ta ( c )  5 b  + 

1/2 A 1 2 0 3  + 3/2 C (2) s c  3/2 CO(g) + A 1  ( c )  

3/10 Ta,O, (s)  + A 1  ( c )  

where s c r i p t  (2 ) i n d i c a t e s  t h e  metal s o l u t i o n ,  S ince  i r o n  i s  t h e  

s o l v e n t  with approximately u n i t  a c t i v i t y  a 

Eq. ( 4 )  provides  

& 1, t h e  equi l ibr ium f o r  
Fe 

a = K  ( 7 )  Al a 

Using t h i s  va lue  of t he  a w e  can c a l c u l a t e  t h e  a c t i v i t y  of tantalum i f  
A l '  

Ta,05 were present ,  u s ing  t h e  equi l ibr ium of Eq. ( 5 )  

a (1727OC) = 3 . 5  x lo-'. 
Ta 

Since  t h i s  i s  lower than  t h e  a c t i v i t y  r e s u l t i n g  from TaC d i s s o l u t i o n ,  w e  

no te  t h a t  some Ta,05 w i l l  form and tantalum w i l l  be deple ted  by t h e  

o x i d a t i o n  s i d e  r e a c t i o n .  This  s i d e  r e a c t i o n  can be checked only  by 

i n c r e a s i n g  t h e  aluminum a c t i v i t y  by a d d i t i o n s  of aluminum metal t o  the  

m e l t .  

Eqs. ( 4 - 6 ) .  The a necessary  to main ta in  a a t  t h e  TaC equ i l ib r ium 

l e v e l  ( a  = 1 x assuming Y - .01, can be c a l c u l a t e d  us ing  

This  has t h e  e f f e c t  of opposing a l l  t h r e e  o x i d a t i o n  s i d e  r eac t ions ,  

A 1  Ta 

Ta Ta - 
Eq. (9) 

a (1727'C) = 1.6 x 
A 1  

The a c t i v i t y  c o e f f i c i e n t  of aluminum i n  d i l u t e  l i q u i d  i r o n  

m e l t s l S  i s  y A l  = ,035, which requires an aluminum a d d i t i o n  of 

- 
XA1 = ( 1 . 6  x 10 ")/.035 

xAl = 5 x IO -5  o r  5 x IO-, atomic pe rcen t .  

Addi t ion  of t h i s  much aluminum or  even somewhat l a r g e r  amounts t o  the  

m e l t  i s  no t  expected t o  impair  carbon and tantalum s o l u b i l i t i e s  i n  i ron .  

17 



The 

brium f o r  Eq. 

co P 

requi red  CO overpressure  can be c a l c u l a t e d  from t h e  e q u i l i -  

(6): 

The CO p res su re  requi red  t o  balance t h e  carbon a c t i v i t y  a t  var ious  t e m -  

p e r a t u r e s  and an a r b i t r a r y  aluminum a c t i v i t y  of a = 1 x 10 is  p l o t t e d  

i n  F igs .  6 and 7. Since  t h e  carbon a c t i v i t y  depends on t h e  Ta a c t i v i t y  

c o e f f i c i e n t  (see F ig .  3 ) ,  t h e  requi red  CO p res su re  t o  s t a b i l i z e  c r u c i b l e  

r e a c t i o n s  a l s o  depends on t h e  Ta a c t i v i t y  c o e f f i c i e n t .  

- 4  . 
A 1  

The f r e e  energy of formation d a t a  f o r  t he  oxides ,  used i n  

determining the  r e a c t i o n  e q u i l i b r i a  f o r  Eqs. (4 -6 ) ,  were taken from 

Cough1 i n .  

d .  Solvent  S ide  Reactions 

Extraneous r e a c t i o n s  between t h e  so lven t  meta l  and r e a c t a n t s  t o  

form ca rb ides  o r  tantalum i n t e r m e t a l l i c  compounds may or may not  be 

undes i rab le ,  depending on t h e  m e l t  cond i t ions .  If  s e p a r a t e  tantalum and 

carbon sources  are  p resen t ,  s i d e  r e a c t i o n s  u s u a l l y  a re  not  harmful, s i n c e  

t h e  r e a c t i o n  products  a r e  themselves sources  of tantalum and carbon, 

r e d i s s o l v i n g  t o  provide  a f i x e d  r e a c t a n t  concen t r a t ion  as r e a c t a n t  i s  

used i n  growing TaC c r y s t a l s ,  Side r e a c t i o n s  a r e  less d e s i r a b l e  when a 

TaC n u t r i e n t  i s  used without  s e p a r a t e  tantalum and carbon sources .  Such 

s o l v e n t  s i d e  r e a c t i o n s  a r e  being considered i n  the  s e l e c t i o n  of s o l v e n t s  

and o p e r a t i n g  temperatures .  Phase a r e  being used f o r  t h i s  

purpose.  

2 .  K i n e t i c  Cons idera t ions  

A dec rease  i n  r e a c t a n t  concent ra t ion  s u f f i c i e n t  t o  prevent  

s u p e r s a t u r a t i o n  and nuc lea t ion  may cause t r a n s p o r t  of r e a c t a n t s  

t h e  s o l u t i o n  t o  become t h e  rate-determining s t e p  i n  the  c r y s t a l  

excess ive  

w i t h i n  

growth 

p rocess .  The major parameters  a f f e c t i n g  t r a n s p o r t  i n  t h e  s o l u t i o n  a r e  

thermal  d i f f u s i v i t i e s ,  mass d i f f u s i v i t i e s ,  thermal g rad ien t s ,  concentra-  

t i o n  g rad ien t s ,  and s t i r r i n g  speed. An a n a l y s i s  of equ i l ib r ium s o l u t i o n  

growth wi th  a thermal g r a d i e n t  has  been made f o r  a s t i r r e d  m e l t ,  u s ing  

18 
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boundary-layer theory.  This  a n a l y s i s  has  been app l i ed  t o  S i c  growing 

from a carbon-sa tura ted  s i l i c o n  so lu t ion ,  and reasonable  agreement with 

t h e  experimental  r e s u l t s  was obtained.  The theory  may be a p p l i c a b l e  t o  

equ i l ib r ium growth of TaC and HfC from very d i l u t e  m e t a l  s o l u t i o n s .  This  

p a r t i c u l a r  a n a l y s i s  provides  f o r  a c a l c u l a t i o n  of dimensionless  (norma- 

l i z e d )  concen t r a t ion  p r o f i l e s ,  ve loc i ty  p r o f i l e s ,  and temperature  p r o f i l e s  

ad jacen t  t o  the  c r u c i b l e  wal l  a s  a f u n c t i o n  of t h e  d i s t a n c e  from t h e  w a l l  

upon which,growth is  i n i t i a t e d .  Because of the  high thermal d i f f u s i v i t i e s  

compared wi th  mass d i f f u s i v i t i e s  i n  l i q u i d  metals,  t h e  thermal boundary 

l a y e r  is  t h i c k e r  than t h e  mass ( concen t r a t ion )  boundary layer ,  l eav ing  a 

supe r sa tu ra t ed  r eg ion  near  t h e  cold wal l ,  even when equi l ibr ium is  

a t t a i n e d  a t  t h e  cold wal l  su r f ace .  This  s i t u a t i o n  i s  shown schemat i ca l ly  

i n  F ig .  8 .  The q u a l i t a t i v e  r e s u l t s  are a s  fol lows:  c r y s t a l  growth is  

promoted wi th in  t h e  supe r sa tu ra t ed  r eg ion  of t he  thermal  boundary-layer, 

and t h e  r a t e  of c r y s t a l  growth i s  a f f e c t e d  by s t i r r i n g ,  The t r a n s p o r t  

ra te  i n c r e a s e s  wi th  s t i r r i n g  ve loc i ty ;  however, the  boundary-layer thick-  

ness  dec reases  wi th  s t i r r i n g  v e l o c i t y .  Consequently, a t  low s t i r r i n g  

speeds c r y s t a l  s i z e  i s  l i m i t e d  by t h e  low mass f lux ,  whereas a t  h igh  

s t i r r i n g  speeds c r y s t a l  l eng th  i s  l i m i t e d  by a th inne r  boundary-layer.  

For a f i x e d  c r y s t a l  growth period, maximum c r y s t a l  s i z e  w i l l  r e s u l t  a t  

s t i r r i n g  speeds t h a t  a r e  n e i t h e r  too f a s t  nor  t oo  slow. Fur the r  consi-  

d e r a t i o n  of t h i s  k i n e t i c  t reatment  w i l l  be de fe r r ed  u n t i l  an optimum 

m e l t  s y s t e m (  s) i s  s e l e c t e d .  

3. Experimental  Resu l t s  

Experimental  work t o  e s t a b l i s h  new so lven t  s y s t e m s  f o r  s o l u t i o n  

growth of  tantalum ca rb ide  w a s  cont inued du r ing  t h i s  r e p o r t  per iod .  Pure 

n i cke l ,  t in -10  atomic percent  iron, t in-10 atomic pe rcen t  aluminum, 

t in -50  atomic percent  lead,  pure i ron ,  and pure aluminum melts were 

t e s t e d  as s o l v e n t s  for tantalum, carbon, and tantalum ca rb ide .  Mechani- 

cal  s t i r r i n g  by a g r a p h i t e  p r o p e l l e r  was employed t o  inc rease  mixing 

w i t h i n  t h e  m e l t  i n  some experiments, and alumina c r u c i b l e s  were s u b s t i -  

t u t e d  f o r  g r a p h i t e  c r u c i b l e s  i n  some ins t ances  i n  an  a t tempt  t o  o b t a i n  

c o n t r o l  over  t h e  carbon concent ra t ion  i n  t h e  m e l t .  

21 



t * .  . 

W 
0: 
3 
t- 
U 
W 
a 
a 
I 
W 
t- 

!- 
U 
X 
t- z 
W 
0 
z 
0 
V 

z 
0 

U u 

m 
a 

I 
I 

I 

I 

MELT DEPTH 

TA-4892-21 

FIG.8 SCHEMATIC DIAGRAM OF THE TEMPERATURE AND 
CARBON CONCENTRATION PROFILES DURING 
SOLUTION GROWTH OF Sic - COMPARING A 
QUIESCENT MELT WITH A STIRRED MELT 

22 



. 

The major parameters  of t he  c r y s t a l  growth experiments conducted 

du r ing  the  r e p o r t  per iod  a r e  presented i n  Table V. A summary of t hese  

experiments fo l lows .  

a .  N e w  Solvent  Experiments 

These experiments were usua l ly  performed with f r e e  tantalum 

p resen t  i n  a carbon c r u c i b l e .  D i s so lu t ion  o f  both tantalum and carbon 

was ind ica t ed  by t h e  appearance of TaC. S o l u b i l i t i e s  were not  d e t e r -  

mined. A s o l v e n t  experiment using f r e e  tantalum was performed wi th  

n i c k e l  i n  Run 24. A g r a p h i t e  p r o p e l l e r  r o t a t i n g  a t  14 rpm i n  t h e  m e l t  

c e n t e r  d i s so lved  dur ing  the  experiment. The g r a p h i t e  c r u c i b l e  remained 

i n t a c t  and a high y i e l d  ( s e v e r a l  grams) of smal l  (<1 mm) cubic  c r y s t a l s  

of tantalum ca rb ide  w a s  ob ta ined .  The h igh  carbon concen t r a t ion  i n  t h e  

n i c k e l  m e l t  caused t h e  r a p i d  p r e c i p i t a t i o n  of  TaC. Back r e f l e c t i o n  

l a t t i c e  cons t an t  measurements gave 4.456 A, i n d i c a t i n g  these  c r y s t a l s  

to  be s t o i c h i o m e t r i c  TaC. Because tantalum d i s s o l v e s  i n  n i c k e l  but  does 

not  d i s s o l v e  i n  t i n ,  f u r t h e r  experiments were performed with n i c k e l - t i n  

a l l o y  m e l t s .  Tantalum w i r e  used a s  t h e  tantalum source  i n  Run 27 was 

on ly  p a r t i a l l y  d i s so lved  i n  t h e  tin-10 atomic percent  n i c k e l  m e l t .  The 

compound Ni,Sn, p r e c i p i t a t e d  as gray p l a t e s  and needles  during cool ing .  

Run 28 w a s  a r e p e a t  of Run 27 except t h a t  TaC c h i p s  were used as t h e  

n u t r i e n t .  

c r y s t a l l i n e  Ni,Sn,. The t in -10  atomic percent  n i cke l  m e l t  i s  no t  a s  

e f f e c t i v e  as t h e  t in-10 atomic percent  i r o n  m e l t  i n  d i s s o l v i n g  tantalum. 

0 

A few very small  TaC c r y s t a l l i t e s  were obtained,  p lus  poly- 

Another a t tempt  was made t o  grow TaC c r y s t a l s  e i t h e r  i n  t h e  

upper p o r t i o n  of t he  c r u c i b l e  or on t h e  p r o p e l l e r  s h a f t ,  us ing  a t in-50 

atomic percent  aluminum m e l t ,  Run 29. Tantalum f o i l  was used i n  l i e u  of 

t h e  TaC n u t r i e n t  used i n  a previous run l a s t  q u a r t e r .  A l l  t h e  g r a p h i t e  

s u r f a c e s  i n  c o n t a c t  with the  m e l t  were found t o  be coated with a t h i n  

p o l y c r y s t a l l i n e  l a y e r  of TaC, and a few s m a l l  c r y s t a l s  were obta ined  

from t h e  c r u c i b l e  base.  These r e s u l t s  were e s s e n t i a l l y  i d e n t i c a l  wi th  

those  of t h e  prev ious  experiment i n  which t h i s  melt  composition w a s  used,  

Experiment 32 w a s  run  to determine t h e  s o l u b i l i t y  of tantalum 

i n  a t in-50 atomic percent  lead a l l o y .  No measurable amount of tantalum 

d i s so lved  and c r y s t a l  growth did n o t  occur ,  
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b .  ExQeriments With Modified Tantalum and Carbon S o l u b i l i t i e s  

A number of experiments were made wi th  known s o l v e n t s  i n  which 

s e p a r a t e  tantalum and/or carbon sources  were d e l e t e d .  

experiments were done before  or concurren t ly  wi th  t h e  a n a l y s i s  presented 

i n  t h e  prev ious  s e c t i o n  and f u r t h e r  work is  r equ i r ed  before  d e f i n i t e  con- 

c l u s i o n s  can be drawn. 

Most of t hese  

I n  Run 25, TaC chips  were used as t h e  only  source  of Ta i n  o rde r  

t o  reduce the  ra te  of  TaC nuc lea t ion  and growth. 

pe rcen t  i ron )  was s t i r r e d  with a g raph i t e  p r o p e l l e r  r o t a t i n g  a t  180'rpm 

t o  a i d  i n  d i s s o l v i n g  and t r anspor t ing  TaC from the  h o t t e r  c r u c i b l e  base t o  

t h e  c o o l e r  upper p o r t i o n  of t he  c ruc ib l e .  

3 w t  percent  TaC d i s so lved .  Only e i g h t  s m a l l  TaC c r y s t a l s  were recovered 

from the  c r u c i b l e  base a f t e r  leaching  t h e  m e l t  wi th  HC1. Evident ly  

n u c l e a t i o n  was r e t a rded ,  bu t  t h e  tantalum a c t i v i t y ,  repressed  by the  

h igh  carbon a c t i v i t y  from t h e  c ruc ib l e ,  was too  low t o  provide adequate 

growth rates.  Experiment 26 w a s  a r epea t  of experiment 25, wi th  a 

h ighe r  s t i r r i n g  v e l o c i t y  and l a r g e r  thermal g rad ien t ,  bu t  t h e r e  was no 

i n c r e a s e  i n  c r y s t a l  s i z e  or y i e l d .  Run 30 was a r epea t  of Run 26 except  

t h a t  t h e  g rad ien t  was reversed  and increased  t o  265'C i n  an  e f f o r t  t o  

f o r c e  t h e  r a p i d l y  r o t a t i n g  TaC n u t r i e n t  i n  t h e  h o t t e r  upper reg ion  t o  

r e c r y s t a l l i z e  i n  t h e  coo le r  c r u c i b l e  base.  Only a few smal l  c r y s t a l s  

were obta ined .  I t  thus  appears  t h a t  t h e  low tantalum concen t r a t ion  

obta ined  i s  l i m i t i n g  c rys t a l  growth i n  a l l  of t h e s e  experiments.  

The m e l t  ( t i n - 1 0  atomic 

A f t e r  21-112 hours, less than 

An alumina c r u c i b l e  was used  i n  Run 31 ( t i n - 1 0  atomic percent  

i r o n  m e l t )  i n  p l a c e  of g r a p h i t e  and a TaC p r o p e l l e r  rep laced  t h e  g r a p h i t e  

one. Thus, s e p a r a t e  sources  of both tantalum and carbon were d e l e t e d .  

Again, less than 1 w t  percent  of t h e  TaC n u t r i e n t  d i s so lved ,  and c r y s t a l  

growth was not  d e t e c t e d .  

I n  o r d e r  t o  i n c r e a s e  t h e  tantalum and carbon s o l u b i l i t i t y  i n  

t h e  absence of sources  of t h e s e  elements o t h e r  t han  TaC, t h e  next  series 

of experiments employed pure i ron  melts contained i n  alumina c r u c i b l e s .  

These experiments were t h e  f i r s t  based on t h e  a n a l y s i s  of t h e  previous 

s e c t i o n .  Run 33 was terminated when the  p u l l  rod a c c i d e n t a l l y  s l i pped  
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i n t o  the  m e l t ,  s a t u r a t i n g  i t  with carbon.  Never the less ,  many smal l  den- 

d r i t i c  TaC c rys t a l s  were found, i n d i c a t i n g  t h a t  s i g n i f i c a n t  amounts of 

TaC d i s so lved  dur ing  t h i s  abbreviated experiment.  Run 34, which produced 

many small  TaC c r y s t a l s  a t  t h e  c r u c i b l e  base, had t o  be terminated a f t e r  

f o u r  hours due t o  suspected c r u c i b l e  c racking .  Furthermore, t h e  TaC 

n u t r i e n t  w a s  by acc iden t  l oca t ed  a t  t h e  cool  base r a t h e r  than  near  t h e  

h o t t e r  s u r f a c e  of t he  m e l t  as intended. This  upse t  t h e  planned thermal  

g r a d i e n t  between the  n u t r i e n t  and t h e  growing c r y s t a l s .  Addi t iona l  

experiments are  planned. 

An alumina c r u c i b l e  conta in ing  an aluminum-tantalum s o l u t i o n  (Run 

35) y ie lded  the  most promising r e s u l t s  t o  da t e .  This experiment w a s  

based on the  low s o l u b i l i t y  i r r e v e r s i b l e  case  of  t he  previous a n a l y s i s .  

Carbon was suppl ied  by a one-eighth-inch-diameter g r a p h i t e  rod i n s e r t e d  

one-half  inch  i n t o  t h e  m e l t .  The rod completely d i s so lved  dur ing  t h e  

20-hour growth pe r iod .  Many r e l a t i v e l y  l a r g e  oc t ahedra l  c r y s t a l s  of TaC 

grew on t h e  wal ls  of t h e  c r u c i b l e  i n  a broad zone from t h e  m e l t  s u r f a c e  

down t o  wi th in  one-quar te r  inch of t h e  c r u c i b l e  base (see Fig .  9 ) .  

C r y s t a l s  of TaA1, grew i n  the  base r eg ion  below the  TaC zone. Deple t ion  

of tantalum i n  t h i s  zone may have caused a r educ t ion  i n  the  s i z e  and 

number of TaC c r y s t a l s .  The f a c t  t h a t  TaC c r y s t a l s  nuc lea ted  and grew 

on t h e  c r u c i b l e  wa l l s  i n  t h i s  experiment i s  encouraging. 
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FIG. 9 TaC CRYSTALS FROM RUN NO. 35 (aluminum melt) GROWING ON THE WALLS 
OF THE AI,O, CRUCIBLE 
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IV FUTURE WORK 

Small  TaC c r y s t a l s  have been formed by a r c  mel t ing  and by growth i n  

metal s o l u t i o n s .  Fu r the r  e f f o r t s  w i l l  be d i r e c t e d  p r i m a r i l y  toward 

growing l a r g e r  c rys t a l s .  Work dur ing  t h e  next  per iod  w i l l  be concen- 

t r a t e d  on t h e  fol lowing:  

1. Complete t h e  modi f ica t ions  t o  t h e  th ree -e l ec t rode  arc-Verneui l  

furnace,  and s ta r t  TaC c r y s t a l  growing experiments 

2 .  Attempt t o  grow l a r g e r  TaC c r y s t a l s  from s o l u t i o n  by two methods: 

(1) us ing  low s o l u b i l i t y  s o l v e n t s  (aluminum a t  low temperatures)  

wi th  s e p a r a t e  tantalum and carbon sources;  and ( 2 )  us ing  high 

s o l u b i l i t y  s o l v e n t s  ( i r o n  a t  high temperatures)  without  sources  

of tantalum and carbon s e p a r a t e  from t h e  TaC n u t r i e n t .  L a t t i c e  

cons t an t  measurements w i l l  be made on c rys ta l s  grown i n  both 

types of  s o l v e n t  s y s t e m s  

3. I n v e s t i g a t e  f u r t h e r  t h e  growth k i n e t i c s  and morphology of TaC 

c rys t a l s  grown from metal  s o l u t i o n s ,  always wi th  t h e  goa l  of 

growing l a r g e r  c r y s t a l s ,  
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