16,663 research outputs found
Recommended from our members
Shopping for food: lessons from a London borough
Purpose – This paper aims to measure access to food in an inner London borough. Design/methodology/approach – There were six phases, which included designing food baskets, consultation with local residents and a shop survey. Recognising the cultural make-up of the borough food baskets and menus were developed for four key communities, namely: White British, Black Caribbean, Turkish, and Black African. Three areas were identified for the study and shopping hubs identified with a 500-metre radius from a central parade of shops. Findings – The findings paint an intricate web of interactions ranging from availability in shops to accessibility and affordability being key issues for some groups. It was found that in the areas studied there was availability of some key healthy items, namely fresh fruit and vegetables, but other items such as: fresh meat and poultry, fish, lower fat dairy foods, high fibre pasta and brown rice were not available. Access was found to be defined, by local people, as more extensive than just physical distance to/from shops – for many shopping was made more difficult by having to use taxis and inconvenient buses. Small shops were important in delivering healthy food options to communities in areas of deprivation and were judged to offer a better range and more appropriate food than the branches of the major supermarket chains. Research limitations/implications – The importance of monitoring the impact of shops and shop closures on healthy food availability is emphasised. From a policy perspective the findings suggest that approaches based on individual agency need to be balanced with upstream public health nutrition approaches in order to influence the options available. Originality/value – The paper is arguably the first to examine and dissect the issue of food availability and accessibility in the inner London borough in question, especially in the light of its proposed redevelopment for the London Olympics in 2012
Finite-well potential in the 3D nonlinear Schroedinger equation: Application to Bose-Einstein condensation
Using variational and numerical solutions we show that stationary
negative-energy localized (normalizable) bound states can appear in the
three-dimensional nonlinear Schr\"odinger equation with a finite square-well
potential for a range of nonlinearity parameters. Below a critical attractive
nonlinearity, the system becomes unstable and experiences collapse. Above a
limiting repulsive nonlinearity, the system becomes highly repulsive and cannot
be bound. The system also allows nonnormalizable states of infinite norm at
positive energies in the continuum. The normalizable negative-energy bound
states could be created in BECs and studied in the laboratory with present
knowhow.Comment: 8 pages, 12 figure
Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes
The recent discovery of critical phenomena arising in gravitational collapse
near the threshold of black hole formation is used to estimate the initial mass
function of primordial black holes (PBHs). It is argued that the universal
scaling relation between black hole mass and initial perturbation found for a
variety of collapsing space-times also applies to PBH formation, indicating the
possibility of the formation of PBHs with masses much smaller than one horizon
mass. Owing to the natural fine-tuning of initial conditions by the exponential
decline of the probability distribution for primordial density fluctuations,
sub-horizon mass PBHs are expected to form at all epochs. This result suggests
that the constraints on the primordial fluctuation spectrum based on the
abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at
http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let
An experimental study of dynamic stall on advanced airfoil section. Volume 2: Pressure and force data
Experimentally derived force and moment data are presented for eight airfoil sections that were tested at fixed and varying incidence in a subsonic two dimensional stream. Airfoil incidence was varied through sinusoidal oscillations in pitch over a wide range of amplitude and frequency. The surface pressure distribution, as well as the lift, drag, and pitching moment derived therefrom, are displayed in a uniform fashion to delineate the static and dynamic characteristics of each airfoil both in and out of stall
An experimental study of dynamic stall on advanced airfoil sections. Volume 1: Summary of the experiment
The static and dynamic characteristics of seven helicopter sections and a fixed-wing supercritical airfoil were investigated over a wide range of nominally two dimensional flow conditions, at Mach numbers up to 0.30 and Reynolds numbers up to 4 x 10 to the 6th power. Details of the experiment, estimates of measurement accuracy, and test conditions are described in this volume (the first of three volumes). Representative results are also presented and comparisons are made with data from other sources. The complete results for pressure distributions, forces, pitching moments, and boundary-layer separation and reattachment characteristics are available in graphical form in volumes 2 and 3. The results of the experiment show important differences between airfoils, which would otherwise tend to be masked by differences in wind tunnels, particularly in steady cases. All of the airfoils tested provide significant advantages over the conventional NACA 0012 profile. In general, however, the parameters of the unsteady motion appear to be more important than airfoil shape in determining the dynamic-stall airloads
Growth of primordial black holes in a universe containing a massless scalar field
The evolution of primordial black holes in a flat Friedmann universe with a
massless scalar field is investigated in fully general relativistic numerical
relativity. A primordial black hole is expected to form with a scale comparable
to the cosmological apparent horizon, in which case it may go through an
initial phase with significant accretion. However, if it is very close to the
cosmological apparent horizon size, the accretion is suppressed due to general
relativistic effects. In any case, it soon gets smaller than the cosmological
horizon and thereafter it can be approximated as an isolated vacuum solution
with decaying mass accretion. In this situation the dynamical and inhomogeneous
scalar field is typically equivalent to a perfect fluid with a stiff equation
of state . The black hole mass never increases by more than a factor of
two, despite recent claims that primordial black holes might grow substantially
through accreting quintessence. It is found that the gravitational memory
scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor
theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review
Measuring Organic Molecular Emission in Disks with Low Resolution Spitzer Spectroscopy
We explore the extent to which Spitzer IRS spectra taken at low spectral
resolution can be used in quantitative studies of organic molecular emission
from disks surrounding low mass young stars. We use Spitzer IRS spectra taken
in both the high and low resolution modules for the same sources to investigate
whether it is possible to define line indices that can measure trends in the
strength of the molecular features in low resolution data. We find that trends
in HCN emission strength seen in the high resolution data can be recovered in
low resolution data. In examining the factors that influence the HCN emission
strength, we find that the low resolution HCN flux is modestly correlated with
stellar accretion rate and X-ray luminosity. Correlations of this kind are
perhaps expected based on recent observational and theoretical studies of inner
disk atmospheres. Our results demonstrate the potential of using the large
number of low resolution disk spectra that reside in the Spitzer archive to
study the factors that influence the strength of molecular emission from disks.
Such studies would complement results for the much smaller number of
circumstellar disks that have been observed at high resolution with IRS
- …