82 research outputs found

    Mitochondrial involvement in sarcopenia

    Get PDF
    Sarcopenia lowers the quality‐of‐life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age‐ and disease‐related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia

    Acute bioenergetic insulin sensitivity of skeletal muscle cells: ATP-demand-provoked glycolysis contributes to stimulation of ATP supply

    Get PDF
    Skeletal muscle takes up glucose in an insulin-sensitive manner and is thus important for the maintenance of blood glucose homeostasis. Insulin resistance during development of type 2 diabetes is associated with decreased ATP synthesis, but the causality of this association is controversial. In this paper, we report real-time oxygen uptake and medium acidification data that we use to quantify acute insulin effects on intracellular ATP supply and ATP demand in rat and human skeletal muscle cells. We demonstrate that insulin increases overall cellular ATP supply by stimulating the rate of glycolytic ATP synthesis. Stimulation is immediate and achieved directly by increased glycolytic capacity, and indirectly by elevated ATP demand from protein synthesis. Raised glycolytic capacity does not result from augmented glucose uptake. Notably, insulin-sensitive glucose uptake is increased synergistically by nitrite. While nitrite has a similar stimulatory effect on glycolytic ATP supply as insulin, it does not amplify insulin stimulation. These data highlight the multifarious nature of acute bioenergetic insulin sensitivity of skeletal muscle cells, and are thus important for the interpretation of changes in energy metabolism that are seen in insulin-resistant muscle

    An evaluation of dexterity and cutaneous sensibility tests for use with medical gloves

    Get PDF
    © 2015 Institution of Mechanical Engineers.The ability of selected dexterity and cutaneous sensibility tests to measure the effect of medical glove properties (material, fit, and number of layers) on manual performance was analyzed. Manual performance testing of gloves to-date has focused on thicker gloves where the effects are more obvious. However, clinicians have reported dissatisfaction with some medical gloves and a perceived detriment to performance of new materials compared to latex. Three tests (Purdue Pegboard Test, Crawford Small Parts Dexterity Test, and Semmes-Weinstein Monofilaments) were performed by 18 subjects in five hand conditions (ungloved; best-fitting, loose-fitting and a double layer of latex examination gloves; best-fitting vinyl gloves). Tests were performed in the ungloved condition first, and the order of the gloved tests was randomized. Learning behavior was also measured. The Purdue test showed a significant effect of hand condition, but no differences between latex and vinyl. No significant effect of hand condition was found in the Crawford "Pins and Collars" test, but the "Screws" test showed promising discrimination between glove types. The Monofilaments test showed a significant effect of hand condition on cutaneous sensibility, particularly a reduction when "double-gloving," but no significant differences between glove types. Existing tests show some ability to measure the effect of gloves and their properties on manual performance but are not comprehensive and require further validation. In order to fully describe the effects of medical gloves on manual performance, further tests should be designed with greater resolution and that better replicate clinical manual tasks

    Facing Aggression: Cues Differ for Female versus Male Faces

    Get PDF
    The facial width-to-height ratio (face ratio), is a sexually dimorphic metric associated with actual aggression in men and with observers' judgements of aggression in male faces. Here, we sought to determine if observers' judgements of aggression were associated with the face ratio in female faces. In three studies, participants rated photographs of female and male faces on aggression, femininity, masculinity, attractiveness, and nurturing. In Studies 1 and 2, for female and male faces, judgements of aggression were associated with the face ratio even when other cues in the face related to masculinity were controlled statistically. Nevertheless, correlations between the face ratio and judgements of aggression were smaller for female than for male faces (F1,36 = 7.43, p = 0.01). In Study 1, there was no significant relationship between judgements of femininity and of aggression in female faces. In Study 2, the association between judgements of masculinity and aggression was weaker in female faces than for male faces in Study 1. The weaker association in female faces may be because aggression and masculinity are stereotypically male traits. Thus, in Study 3, observers rated faces on nurturing (a stereotypically female trait) and on femininity. Judgements of nurturing were associated with femininity (positively) and masculinity (negatively) ratings in both female and male faces. In summary, the perception of aggression differs in female versus male faces. The sex difference was not simply because aggression is a gendered construct; the relationships between masculinity/femininity and nurturing were similar for male and female faces even though nurturing is also a gendered construct. Masculinity and femininity ratings are not associated with aggression ratings nor with the face ratio for female faces. In contrast, all four variables are highly inter-correlated in male faces, likely because these cues in male faces serve as “honest signals”

    Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Get PDF
    Background: Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant.Methods: The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls.Results: Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 \ub1 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 \ub1 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 \ub1 12.4% of total phospholipid content).Conclusion: Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects

    Independent impacts of aging on mitochondrial DNA quantity and quality in humans

    Get PDF
    Background The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85 years old, recruited in the TwinsUK cohorts. Results We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (ÎČ = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (ÎČ = −0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers. Conclusions Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging

    Resources for sports engineering education

    Get PDF
    This paper serves as a resource guide for Sports Engineering educators. The paper covers key topics in Sports Engineering, including ball impact, friction, safety and materials. A variety of resource types are presented to reflect modern methods of learning and searching for information, including textbooks, research and review papers, websites and videos. The field could benefit from more resources specifically designated for teaching Sports Engineering, particularly textbooks

    PHDcleav: A SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors

    Get PDF
    Background: Dicer, an RNase III enzyme, plays a vital role in the processing of pre-miRNAs for generating the miRNAs. The structural and sequence features on pre-miRNA which can facilitate position and efficiency of cleavage are not well known. A precise cleavage by Dicer is crucial because an inaccurate processing can produce miRNA with different seed regions which can alter the repertoire of target genes.Results: In this study, a novel method has been developed to predict Dicer cleavage sites on pre-miRNAs using Support Vector Machine. We used the dataset of experimentally validated human miRNA hairpins from miRBase, and extracted fourteen nucleotides around Dicer cleavage sites. We developed number of models using various types of features and achieved maximum accuracy of 66% using binary profile of nucleotide sequence taken from 5p arm of hairpin. The prediction performance of Dicer cleavage site improved significantly from 66% to 86% when we integrated secondary structure information. This indicates that secondary structure plays an important role in the selection of cleavage site. All models were trained and tested on 555 experimentally validated cleavage sites and evaluated using 5-fold cross validation technique. In addition, the performance was also evaluated on an independent testing dataset that achieved an accuracy of ~82%.Conclusion: Based on this study, we developed a webserver PHDcleav (http://www.imtech.res.in/raghava/phdcleav/) to predict Dicer cleavage sites in pre-miRNA. This tool can be used to investigate functional consequences of genetic variations/SNPs in miRNA on Dicer cleavage site, and gene silencing. Moreover, it would also be useful in the discovery of miRNAs in human genome and design of Dicer specific pre-miRNAs for potent gene silencing.Peer reviewedBiochemistry and Molecular Biolog

    Concentrations of potentially toxic elements and soil environmental quality evaluation of a typical Prosecco vineyard of the Veneto region (NE Italy)

    Get PDF
    Purpose The aim of this work was to assess the concentrations of potentially toxic elements and to evaluate the soil quality of a typical Prosecco Denomination of Controlled and Guaranteed Origin vineyard of the Veneto region, NE Italy. Materials and methods Soil samples and leaves of Taraxacum officinale and Vitis vinifera were collected during spring–summer 2014. Element determination (Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V, and Zn) were performed with ICP-OES after microwave digestion of samples. Soil quality was assessed via the biological soil quality (BSQ-ar) index. Lipid peroxidation test was performed to evaluate the vegetation oxidative stress, based on malondialdehyde (MDA) content via spectrophotometer. Results and discussion High concentrations of Al,Mg, and P were identified in soil, while high contents of Al, Cu, Fe, and Zn were found in V. vinifera leaves. The high concentrations in soil are probably due to agricultural activities, whereas those in leaves are probably due to atmospheric deposition and repeated use of foliar sprays in viticulture. The bioconcentration factor showed an effective transport of Cu, P, and Zn, from soil to leaf. The BSQ-ar values registered were similar to those obtained in preserved soils; hence, the biological class (VI) of these soils is high. The MDA content in T. officinale and V. vinifera leaves was below the reference value for T. officinale (2.9 ± 0.2 ÎŒM), suggesting that the metal content did not stress the vegetation in the investigated site. Conclusions The MDA value for V. vinifera (1.1 ± 0.7 ÎŒM) could be adopted as another control value for soil quality, which in our case is of Bgood quality.^ Moreover, our results suggest that high concentrations of elements detected in the analyzed samples do not influence negatively the quality of soil, but a better agronomic management could improve soil quality in the studied area
    • 

    corecore