521 research outputs found

    Mechanical characterization and AE of translucent self-compacting concrete plates in bending

    Get PDF
    An experimental and numerical study on the mechanical behaviour of an innovative composite material based on the combination of a self-compacting concrete (SCC) matrix with transparent glass inclusions is proposed. The experimental tests have been monitored by an acoustic emission (AE) device. The results are interpreted by a FEM model accounting for the fracture of the two different materials and the interface between them. The AE monitoring is used for the definition of the crack pattern, and to determine the fracture energy dissipation domai

    Super-Bridges Suspended Over Carbon Nanotube Cables

    Full text link
    In this paper the new concept of super-bridges, i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of 3.Comment: 17 pages, 6 figures, 2 table

    Is the Shroud of Turin in Relation to the Old Jerusalem Historical Earthquake?

    Full text link
    Phillips and Hedges suggested, in the scientific magazine Nature (1989), that neutron radiation could be liable of a wrong radiocarbon dating, while proton radiation could be responsible of the Shroud body image formation. On the other hand, no plausible physical reason has been proposed so far to explain the radiation source origin, and its effects on the linen fibres. However, some recent studies, carried out by the first author and his Team at the Laboratory of Fracture Mechanics of the Politecnico di Torino, found that it is possible to generate neutron emissions from very brittle rock specimens in compression through piezonuclear fission reactions. Analogously, neutron flux increments, in correspondence to seismic activity, should be a result of the same reactions. A group of Russian scientists measured a neutron flux exceeding the background level by three orders of magnitude in correspondence to rather appreciable earthquakes (4th degree in Richter Scale). The authors consider the possibility that neutron emissions by earthquakes could have induced the image formation on Shroud linen fibres, trough thermal neutron capture by Nitrogen nuclei, and provided a wrong radiocarbon dating due to an increment in C(14,6)content. Let us consider that, although the calculated integral flux of 10^13 neutrons per square centimetre is 10 times greater than the cancer therapy dose, nevertheless it is100 times smaller than the lethal dose.Comment: 13 pages, 1 figur

    Nanoscale Weibull Statistics

    Full text link
    In this paper a modification of the classical Weibull Statistics is developed for nanoscale applications. It is called Nanoscale Weibull Statistics. A comparison between Nanoscale and classical Weibull Statistics applied to experimental results on fracture strength of carbon nanotubes clearly shows the effectiveness of the proposed modification. A Weibull's modulus around 3 is, for the first time, deduced for nanotubes. The approach can treat (also) a small number of structural defects, as required for nearly defect free structures (e.g., nanotubes) as well as a quantized crack propagation (e.g., as a consequence of the discrete nature of matter), allowing to remove the paradoxes caused by the presence of stress-intensifications

    An explicit mechanical interpretation of Eringen non-local elasticity by means of fractional calculus

    Get PDF
    If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen non-local elastic model. Aim of the present paper is to provide a mechanical interpretation to this non-local fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; static, kinematic and constitutive equations as well as the proper boundary conditions are derived and discussed

    Finite fracture mechanics and cohesive crack model: Weight functions vs. cohesive laws

    Get PDF
    The present work represents the prosecution of a previous paper [Short cracks and V-notches: Finite Frac- ture Mechanics vs. Cohesive Crack Model (2016). P. Cornetti, A. Sapora, A. Carpinteri. Engineering Fracture Mechanics 168:2–12] aiming to corroborate the use of Finite Fracture Mechanics by showing that its fail- ure load estimates are very close to the ones provided by the well-established Cohesive Crack Model. While the above paper focused only on the Dugdale cohesive law and the original Finite Fracture Me- chanics approach, here we consider generic cohesive laws of power law type and propose an extension of Finite Fracture Mechanics based on stress weight functions. We argue that excellent agreement be- tween the models is found provided proper correspondence rules between the shape of the cohesive laws and of the weight functions are given. As a test bench for this conjecture, we choose the Griffith crack geometry, where we are able to achieve the solutions in a semi-analytical way for both the models. Finally, we show that similar results can be obtained also by varying the domain of the weight function while keeping fixed its shape

    Lateral load effects on tall shear wall structures of different height

    Get PDF
    A three-dimensional formulation is proposed to analyze the lateral loading distribution of external actions in high-rise buildings. The method is extended to encompass any combination of bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of Timoshenko-Vlasov’s theory of sectorial areas. More in detail, the proposed unified approach is a tool for the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and allows to better understand stress and strain distributions in the different bearing elements if compared to a finite element analysis. Numerical examples, describing the structural response of tall buildings characterized by bracings with different cross-section and height, show the effectiveness and flexibility of the proposed method. The accuracy of the results is investigated by a comparison with finite element solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements

    Fokker-Planck Equation with Fractional Coordinate Derivatives

    Full text link
    Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result, we obtain Fokker-Planck equation with fractional coordinate derivative of order 1<α<21<\alpha<2.Comment: LaTeX, 16 page

    nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Get PDF
    In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC) beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects
    corecore