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Abstract 

 

The present work represents the prosecution of a previous paper [Short cracks and V-notches: Finite 

Fracture Mechanics vs. Cohesive Crack Model (2016). P. Cornetti, A. Sapora, A. Carpinteri. 

Engineering Fracture Mechanics 168:2-12] aiming to corroborate the use of Finite Fracture 

Mechanics by showing that its failure load estimates are very close to the ones provided by the 

well-established Cohesive Crack Model. While the above paper focused only on the Dugdale 

cohesive law and the original Finite Fracture Mechanics approach based on a point-wise stress 

condition, here we consider generic cohesive laws of power law type and propose an extension of 

Finite Fracture Mechanics based on stress weight functions. We argue that excellent agreement 

between the models is found provided proper correspondence rules between the shape of the 

cohesive laws and of the weight functions are given. As a test bench for this conjecture, we choose 

the Griffith crack geometry, where we are able to achieve the solutions in a semi-analytical way for 

both the models. Finally, we show that similar results can be obtained also by varying the domain of 

the weight function while keeping fixed its shape. 

 

Keywords: Finite Fracture Mechanics, Cohesive Crack Model, Griffith Crack, Weight Functions. 

 

 

1. Introduction 

 

After the first pioneering papers by Barenblatt (1959), Dugdale (1960) and Hilleborg (1976), the 

Cohesive Crack Model (CCM) has been extensively used to analyze the fracture of plain or 

composite structures (e.g. Carpinteri, 1989; Needleman, 1990). The core of the CCM is represented 

by: (i) the cohesive law, a material property that describes macroscopically how the (cohesive) 
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stresses decrease as the separation between crack faces increases up to complete detachment; (ii) the 

process zone, i.e. the length where cohesive stresses act. 

One of the peculiarities of the CCM is its ability to predict crack initiation, a key-point where 

Linear Elastic Fracture Mechanics (LEFM) fails. This nice feature is shared with the more recent 

Finite Fracture Mechanics (FFM) model, resting on the assumption of a finite crack increment (in 

contrast with the infinitesimal growth assumed by LEFM). After the first pioneering paper by 

Hashin (1996), FFM received more and more attention following the fundamental work by 

Leguillon (2002), where the way to couple the stress condition for crack propagation with the 

discrete energy balance was set. 

Implementation of the CCM requires a nonlinear finite element analysis with a very fine mesh, 

since an accurate resolution of the process zone (usually much smaller than the size of the structure) 

is needed. This is a drawback, since it means large computing times. On the other hand, FFM is 

much easier to apply since it just need a linear-elastic analysis. A good agreement between the two 

approaches is obviously welcome, since it means the possibility to replace CCM simulations with 

FFM analyses. Alternatively, wishing to retain the advantages of both the approaches, one can use 

FFM for preliminary sizing in structural design, letting the CCM for subsequent refinements, or, in 

numerical simulations of experimental tests, one can get through FFM a first estimate of the fracture 

parameters needed by the CCM. 

For what concerns the comparison between FFM and CCM, preliminary results sound 

encouraging. Fair to excellent agreements were found for V-notched structures (Henninger et al., 

2007; Murer & Leguillon, 2010; Cornetti et al., 2016), for open-holed plates (Rosendhal et al., 

2017) for interfacial edge debonding in layered structures (Cornetti et al., 2015; Martin et al., 2016), 

for the pull-push test (Cornetti et al., 2012), for the double cantilever beam test (Dimitri et al., 

2017), for the fiber-matrix debonding in composite materials (García et al., 2014; Távara et al., 

2016) and for several adhesive lap joint geometries (Stein et al., 2015). 

The agreement between CCM and FFM is not surprising since, despite the different – continuous 

vs. discrete – crack growth mechanism, the energy spent to create the new (unit) fracture surface is 

Gc for both the models (a condition usually not met by simple strength criteria and by the theory of 

critical distances, Taylor (2007)). Moreover, both CCM and FFM take the tensile strength into 

account: the CCM by means of the cohesive law shape, and the FFM by means of the expression of 

the stress condition. Up to now, an excellent correspondence has been found between the CCM with 

a constant cohesive law and the FFM approach with a point-wise stress requirement and between 

the CCM with a linearly descending cohesive law and the FFM approach with an average stress 

condition. 
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The aim of the present paper is twofold. On one hand, we provide an extension of the FFM 

approach by introducing a weight function into the stress condition. On the other hand, we 

investigate how to improve the matching between CCM and FFM failure load predictions by 

choosing suitable pairs of cohesive laws and the stress weight functions. The analysis is carried out 

mainly on a single geometry, i.e. the Griffith crack. Despite this could represent a limit of the 

present work, and further analyses are needed to verify the correspondence rules between cohesive 

laws and weight functions provided herein, the advantage of the chosen geometry is that CCM and 

FFM solutions are achieved in an analytical or semi-analytical form, allowing a deep insight on the 

problem at hand. However, at the end we present also the results for a couple of geometries with 

finite and vanishing sizes along with some comments. 

The plan of the paper is as follows. In Section 2 we solve the Griffith crack according to the 

CCM, i.e. we derive the integral equation ruling the problem for an arbitrary cohesive law; 

furthermore, we provide a numerical technique to solve the equation and obtain the failure stress for 

softening laws of power law type. Then, in Section 3, we present a FFM extension based on the 

introduction into the stress condition of a weight function; we investigate the effect of its shape and 

domain. In Section 4, correspondence rules between weight functions and cohesive laws are 

proposed and checked for the considered geometry. Finally, we provide some conclusions in 

Section 5. 

 

 

2. A Cohesive Crack Model solution for the Griffith Crack 

 

As stated in the Introduction, we use as a test bench an infinite slab with a central crack of length 2a 

under a remote uni-axial stress 

 orthogonal to the crack (i.e. the Griffith crack geometry, see 

Fig.1a). In this section, we provide a way to solve the problem according to the CCM, i.e. when the 

material obeys an arbitrary cohesive law inside the process zone, while remaining linear elastic 

outside. Note that Xu & Waas (2017) recently gave a solution to such a structural problem. 

However, for the sake of comparison with the FFM approach and because we used a different 

numerical technique (see below), in the present section we provide the details of the CCM solution. 

 

2.1 Governing equation 

 

In order to achieve the solution, one need two fundamental results by Linear Elastic Fracture 

Mechanics (LEFM). The former one is represented by the Stress Intensity Factor (SIF) KI and the 
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Crack Opening Displacement (COD) w for the Griffith Crack, which are equal to, respectively 

(Fig.1a): 

 

IK a    (1) 

  2 24
w x a x

E

 


 (2) 

 

x being is the spatial coordinate as in Fig.1 and E the Young modulus in plain strain conditions. 

The latter result consist of the SIF and the COD for a pair of opposite forces P acting on the crack 

faces at a distance t from the crack mid-point (a < t < +a), see Fig.1b: 

 

 
2 2

I a

P a t
K

a ta






 (3) 

 
24

Arccosh
P a t x

w x
E a x t




 
 (4) 

 

Note that Eq.(3) provides both the crack tip SIFs: the first sign refers to the right crack tip (x = +a), 

the second one to the left crack tip (x = a). For what concerns Eq.(4), it is worth noting that it is 

singular in x = t, i.e. where the force is applied, as reasonably expected in the linear elasticity 

framework. Finally, observe that both displacement functions in Eqs.(2) and (4) can be obtained 

starting from the SIF expressions given by Eqs.(1) and (3) according to Paris’ equation (Tada et al., 

2000), but their derivation is here omitted for the sake of brevity. 

As well known, the CCM prescribes non-singular stress fields. Hence, for any tensile load, a 

process zone (of length ap) appears ahead the crack tip where cohesive stresses coh act in order to 

vanish the SIF at the so-called fictitious crack tip (Hillerborg, 1976), see Fig.2a. Thus, by the 

principle of effect superposition, we have that: 

 

   I I coh 0K K     (5) 

 

Provided that a is now replaced by (a+ap), the two terms at the left hand side are given by Eq.(1) 

and by integrating Eq.(3) over the process zone, respectively. Thus, Eq.(5) yields a relationship 

among the remote stress, the cohesive stresses and the process zone length, which, after some 

analytical manipulations, can be cast into: 
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p

coh

2 2

p

( )2
d

( )

a a

a

t
t

a a t






 

  
  (6) 

 

Analogously to what done for the SIF, we can evaluate the COD by summing the contribution of 

the external load (Eq.(2)) and of the cohesive stresses (integrating Eq.(4)). By further substituting 

the remote stress with the expression given by Eq.(6), we finally get:  

 

p 2 2 2 2

p p p

coh 2 2

p p p

( ) ( ) ( )4
( ) ( ) 2 Arccosh Arccosh d

( ) ( )( ) ( )

a a

a

a a x a a t x a a t x
w x t t

E a a t a a x t a a x t

         
     

          
   

(7) 

 

The CCM states that the cohesive stresses coh in the process zone depend on the crack opening w 

according to a function named cohesive law (see Fig.2b); this function is hereafter marked as f in 

dimensionless form, i.e.  coh f w  , being: 

 

coh
coh

c c

,
w

w
w


  


 (8) 

 

the dimensionless cohesive stresses and opening displacements, respectively. The cohesive law 

describes how the cohesive stresses decrease from the material tensile strength c to zero as the 

crack opening increases from 0 to its critical value wc, i.e. the value at which the interactions 

between crack faces vanish. The area below the curve represents the fracture energy GIc, i.e. the 

energy necessary to create the unit fracture surface. The shape of the cohesive law as well as its 

parameters c, wc, GIc are assumed to be material properties. For the sake of simplicity, it is 

convenient to introduce also the parameter q, defined as the number whose inverse is the area below 

the dimensionless cohesive law: 

 

1

0

1
( ) df t t

q
  (9) 

 

or, equivalently, q = (c wc) / GIc. Obviously, q is larger than or equal to 1.  
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Because of the cohesive law, it is clear that Eq.(7) is an integral equation in the displacement 

function. We can give it a dimensionless formulation by normalizing the process zone ap, the 

horizontal coordinate x and the dummy variable t with respect to the crack length a, i.e.: 

 

pa a

a


  ,   

x

a
  ,   

t

a
   (10) 

 

The following inequalities hold:  > 1, 1 <  <  and 1 <  < . The crack length a is then 

conveniently normalized with respect to Irwin’s characteristic length lch: 

 

ch

a

l
  ,   Ic

ch 2

c

E
l






G
 (11) 

 

Introducing the (weakly singular) kernel function g as: 

 

2 2 2 2

2 2
( , , ) 2 Arccosh Arccosh

( )
g

         
      

           
 (12) 

 

by some analytical manipulations, Eq.(7) becomes: 

 

 
1

4
( ) ( ) ( , , ) dw f w g

q




      
   (13) 

 

In this form, it is apparent that, from a mathematical point of view, the problem at hand reduces to 

the solution of a weakly singular nonlinear Fredholm integral equation of the second kind. One can 

also choose as unknown variable the cohesive stresses instead of the opening displacement; in this 

second way, we get: 

 

 1

coh coh

1

4
( ) ( ) ( , , ) df g

q



 
        

   (14) 

 

where f
 1

 represents the inverse of the cohesive law f. Once f is defined (and hence q by Eq.(9)), the 

solution of either Eq.(13) or (14) depends only on the two parameters  and , i.e. on the crack and 
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process zone length. The corresponding remote stress is then determined by means of Eq.(6), which, 

in dimensionless form, reads: 

 

coh

2 2
c 1

( )2
d




 

 
    

  (15) 

 

Wishing to determine the failure stress f, one has to fix  and then let  slowly increase starting 

from zero. The remote stress is firstly increasing and then decreasing: its maximum value represents 

the failure stress f. Note that the maximum is always achieved before the opening displacement 

reaches its critical value wc at x = a (i.e. when the real crack tip starts moving), except for the 

Dugdale cohesive law. Moreover, in order to obtain the failure stress vs. the crack length diagram, 

the procedure has to be repeated for different  values. 

Eq.(13) can be solved analytically only for a Dugdale cohesive law, i.e. for constant cohesive 

stresses. Accordingly, f  1 and Eq.(13) reverts to the evaluation of an integral (see e.g. Broberg, 

1999; Cornetti et al., 2016). In all the other cases, the equation has to be solved numerically; in the 

next subsection, we provide a way to do it. 

 

2.2 Numerical solution 

 

For numerical reasons, it is easier to solve Eq.(14) instead of Eq.(13). To this aim, we follow a 

procedure somewhat similar to the one proposed by Lenci (2001) to obtain the stress field for a 

(Griffith) crack at a weak interface. The basic idea is to express the unknown function in series and 

then to determine the coefficients of the series by minimizing the difference between the two sides 

of Eq.(14). 

In the present case, we approximate the cohesive stress function in power series, i.e. as a 

polynomial of order k: 

 

2

coh 0 1 2

0

( )
k

i k

i k

i

c c c c c


            (16) 

 

The problem unknowns are now the coefficients ci (i = 1,…, k) of the polynomial. The first 

coefficient c0 is excluded since it can be expressed as a function of the other coefficients: in fact, at 

the fictitious crack tip, the stress equals the tensile strength, i.e. coh ( ) 1   . Thus:  
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0

1

k
i

i

i

c c


    (17) 

 

Let us now define m equally spaced points within the interval 1    . Their abscissa  j is: 

 

1
1 ( 1), 1, ,

1
j

j
j m

m


    


 (18) 

 

The coefficients ci of the polynomial (16) are then determined by minimizing the Mean Square 

Error between the two sides of Eq.(14) evaluated at  =  j (j = 1,…, m). In formulae: 

 

1 2

2

1

, , ,
1 0 0

1 4
min ( , )

k

m k k
i

i j i i j
c c c

j i i

f c c h
m q



  

    
      

    
    (19) 

 

where: 

 

1

( , ) ( , , ) di

ih g



         (20) 

 

Although the kernel function g (given by Eq.(12)) is twice singular (at  =  and  = , 

respectively), the integrals in Eq.(20) can be evaluated in a closed form; thus, there is no loss of 

precision due to the singularities. More precisely, h0, h1 are easily achieved; then, through 

integration by parts and suitable analytical manipulations, we get a recursive formula providing hi 

as a function of hi2; functions h0, h1 and the recursive formula are reported in the appendix. 

A further advantage of the proposed numerical procedure is that the value of the minimum 

provides an information about the accuracy of the solution. The root of Eq.(19) represents the Root 

of the Mean Square Error (RMSE) and, obviously, the lower it is, the more precise the solution. In 

all the subsequent calculations, we assume k = 8 and m = 50, values that we considered satisfactory 

since they always provided a RMSE within the range 10
5

  10
3

; moreover higher k and m values 

did not provide a significant reduction of the RMSE. 

As an example we show, for a given crack length and for the case of linear softening (i.e. 

coh 1 w   ), how to compute the stress and displacement fields within the process zone, as well as 
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the failure stress. Note that, in this particular case, it is also possible to obtain the solution assuming 

that the unknown function is piecewise linear and Eq.(13) reverts to the solution of a linear system. 

However, the method proposed here is more general, being applicable also to non-linear softening 

laws, as done in the following. For the linear softening case, q = 2 and the expression to be 

minimized (Eq.(19)) becomes: 

 

1 2

2

, ,
1 0 0

1 2
min 1 ( , )

k

m k k
i

i j i i j
c c c

j i i

c c h
m   

    
       

    
    (21) 

 

We set, for instance,  = 1 (i.e. a = lch). Then we solve the minimization problem (21) for increasing 

 values (starting from 1): at each step the coefficients ci define the stress and displacement fields. 

As  increases, the remote stress (given by Eq.(15)) increases. The maximum is reached at   

1 (i.e. for a process zone length ap = 0.691 a) when the remote (failure) stress is  = f = 0.478 

c; the corresponding RMSE is 7.6 10


. The load then decreases up to   89, when the opening 

displacement reaches its critical value and the cohesive stresses vanish at x = a (i.e. (1) 1w  , 

coh (1) 0   and the real crack starts growing). For such a  value (i.e. for a process zone length ap = 

0.899 a), we obtain  = 0.461 c and a RMSE equal to 6.9 10


. For these two cases, displacement 

and stress fields within the process zone are plotted in Figs.3a and 3b, respectively. 

As mentioned above, it is worth observing that the same structural problem has been very 

recently considered by Xu & Waas (2017). They derived the integral equation Eq. (14) and 

provided a numerical solution for the linear softening case. Their numerical approach is completely 

different from the one we followed. The main differences are: (i) the continuous stress distributed 

within the cohesive zone is modeled by a number of discrete uniform segment stress, whereas in the 

present manuscript is approximated by a polynomial function valid on the whole cohesive zone; (ii) 

the control parameter is the remote stress and the process zone is the outcome (herein is the 

opposite, the process zone length being the input and the remote stress the output). Consequently, 

Xu & Waas (2017) detected multiple solutions, in the sense that, close to the peak value of the 

remote stress, they found two different admissible values for the process zone size. See also Xu et 

al. (2014). 

 

2.3 Failure stress vs. crack length according to power cohesive laws 
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Following the procedure previously outlined, i.e. fixing  and letting  to increase until the remote 

stress reaches the maximum, we determine the failure stress vs. crack length for different cohesive 

laws. More in detail, we consider power cohesive laws, that is: 

 

 coh 1
n

w    (22) 

 

where n is a positive number. In Fig.4a the cohesive law (22) is plotted for the following values: n = 

0 (Dugdale cohesive law), n = 1/2 (corresponding to a concave cohesive law), n = 1 (linear 

softening), n = 2 and n = 4 (corresponding to convex cohesive laws); see also Table 1, third column. 

Wishing to isolate the effect of the shape of the cohesive law, the comparison is performed keeping 

the fracture energy and the tensile strength constant, so that the cohesive laws actually compared are 

the ones drawn in Fig.4b. The parameter q is equal to n + 1 and represents the abscissa of the point 

at which the cohesive stress vanishes according to the different cohesive laws. 

In Fig.5a we plot the normalized failure stress vs. the normalized crack length according to the 

CCMs and, for the sake of comparison, to the LEFM (i.e. 
f c 1    ). It is evident that the 

higher n (i.e. the steepest the cohesive stress decrement), the lower the failure stress is. Moreover, 

the effect of the parameter n decreases as n itself increases. In the Scientific Literature (see e.g. Shet 

& Chandra, 2004; Alfano, 2006; Wang, 2013) there are several papers highlighting the effect of the 

shape of the cohesive law, usually concluding that it is rather small (at fixed Gc and c). We agree 

that the effect is small (it is null for  = 0 and   ); however, it is not always negligible, as it 

reaches the 30% between the predictions of the extreme cases herein considered (n = 0 and n = 4 

respectively) for  values close to 1/ (when the LEFM prediction crosses the tensile strength). As 

expected, all the CCM curves tend asymptotically to the LEFM curve for large cracks (i.e. for large 

sizes). Finally, in Fig.5b we plotted the normalized process zone size vs. the crack length at failure 

stress. It is worth noting the different trend: monotonically decreasing for small n (n = 0, 0.5) and 

monotonically increasing for large n (n = 1, 2, 4). 

 

 

3. Weight functions for Finite Fracture Mechanics 

 

Finite Fracture Mechanics is a fracture criterion resting on the assumption of a finite crack 

advancement, i.e. the infinitesimal energy balance by Griffith is replaced by a discrete energy 

balance: crack grows by a finite step  if the energy available is equal or larger than GIc  . For 



11 
 

mode I problems in homogeneous materials and recalling Irwin’s relationship G = KI
2
/E’, this 

condition can be written as: 

 

2 2

I Ic( ) d

a

a

K a a K



     (23) 

 

where the crack length a may be zero if the original geometry is un-cracked. This a necessary 

condition for crack to grow. It becomes also a sufficient condition if, at the same time, the (average) 

stress exceeds the material tensile strength on the length  where crack will grow: 

 

 y cσ σx  for a x a     or   y cσ d σ

a

a

x x



      (24) 

 

For usual cases (positive geometries), the KI(a) and y(x) functions are monotonically increasing  

and decreasing respectively. In such a case, the minimum (actual) failure load is the one for which 

the two inequalities (23) and (24) are strictly fulfilled; correspondingly, FFM reverts to the 

solutions of two equations in two unknowns, the finite crack advance  and the failure load, 

implicitly embedded in KI(a) and y(x). 

Before proceeding, it is worth observing that the energy available for the finite crack growth is 

conveniently obtained by integrating (the square of) the SIF (left hand side of Eq. (23)) as far as the 

SIF function is known analytically (like for the Griffith crack case herein considered) or 

approximated expressions are available from Fracture Mechanics Handbooks (Tada et al, 2000). If 

this is not case, it is preferable its evaluation by suitable path-independent integrals exploiting the 

linear elastic solution before and after the finite crack advance (see e.g. Leguillon (2002), where 

semi-analytical results are obtained by the asymptotic matching technique) or by evaluating 

numerically the crack closure work either by Finite or Boundary Element Analyses (see e.g. Becker 

et al. 2010; Sun et al. 2015). 

Up to now, in mode I problems, the discrete energy balance has been coupled with a point-wise 

(Leguillon, 2002) or to an average (Cornetti et al., 2006) stress requirement – see eqn (24). In order 

to get FFM more flexible, in the following we propose a generalized stress condition based on the 

introduction of weight functions. The basic idea is that materials show different microstructural 

features when cracking; these different behaviors can be phenomenologically taken into account by 

weighting differently the stresses ahead the crack tip, similarly to what occurs for the CCM, where 

different cohesive law shapes refer to different materials / micro-cracking mechanisms. 
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Before starting, it is worth noting that weight functions can be applied to the strain energy 

release rate (during the finite crack growth) as well: see, for instance, Bažant (2001) or the so-called 

Equivalent-LEFM criterion, according to which the strain energy release rate (or the SIF) is 

evaluated for an equivalent crack larger than the real one. However, such a procedure implies a 

violation of the energy balance, i.e. the energy released during the finite crack growth does not 

coincide with the energy necessary to create the new crack surface. Thus, we decide to preserve the 

discrete energy balance as in the original FFM formulation (also for the sake of comparison with the 

CCM, which satisfies the energy balance as well) and to act only onto the stress condition. 

Hence, let us introduce the weight function (t), which, by definition, fulfills the condition: 

 

  d 1t t





   (25) 

 

According to the (generalized) FFM, a crack of length a placed along the x-axis and loaded in mode 

I will propagate if the two following conditions are fulfilled: 

 

 y c

2 2

I Ic

σ d σ

( ) d

a

a

a

x a
x x

K a a K





  
    

 

    







 (26) 

 

System (26) holds true also for initially un-cracked specimens (e.g. notched specimens), when a is 

null. For usual cases, as the present one (i.e. positive geometries), the stress field is monotonically 

decreasing along x and the SIF is monotonically increasing along with a; thus, the minimum failure 

load satisfying the system (26) is the one for which the two inequalities are strictly satisfied. 

Westergaard’s solution provides the stress field for the Griffith crack geometry. Ahead the crack 

tip (x > a), it reads: 

 

 y
2 2

σ σ
x

x
x a




 (27) 

 

At incipient failure, substitution of Eqs. (1) and (27) into system (26) yields (in dimensionless 

form): 
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2
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



     
     

    



    


 (28) 

 

where now all the lengths have been normalized with respect to the internal length, i.e.   = x/lch 

and   = /lch. Eq.(28) represents a system of two equations in two unknowns, i.e. the failure remote 

stress (f/c) and the finite crack increment  , whose solution depends on the normalized crack 

length  and the choice of the weight function . Wishing to investigate the effect of , we will first 

fix the domain of the weight function and let vary its shape; then, we will fix the shape and let the 

domain/position vary. 

 

 

3.1 Effect of the shape of the weight function  

 

In this former case, we assume that the (and only the) stresses acting where the crack grows by a 

finite amount affect crack propagation, i.e. the weight function (t) differs from zero for 0 < t < 1. 

In Fig.6a we plot the following weight functions, all equal to zero outside of the interval [0,1]: 

 

   
2

3 1t t    (29a) 

  1t   (29b) 

   6 1t t t    (29c) 

  23t t   (29d) 

   1t t     (29e) 

 

where () denotes the Dirac delta function. Before proceeding, it is worth noting that the second 

and the fifth cases correspond to the FFM versions currently used. The choice of a uniform weight 

function in Eq.(26) is tantamount to assume that fracture propagates when the average stress 

reaches the tensile strength. The corresponding solution for the Griffith crack was provided in 

Cornetti et al. (2006): the finite crack step does not depend on the crack length, being always equal 

to (2/)lch. On the other hand, the Dirac delta weight function (Eq.(29e)) corresponds to a point-



14 
 

wise stress requirement. Recalling the scaling property (c t) = (t)/c (c constant), it is evident that 

in such a case Eq.(26) reverts to the FFM criterion proposed by Leguillon (2002) (for monotonically 

decreasing stresses), i.e. fracture propagates if the stress all over the finite crack increment is larger 

than the tensile strength. The corresponding solution for the Griffith crack, yielding a cubic 

equation in the finite crack step, can be found in Cornetti et al. (2016). In all the other cases, the 

integral in the stress condition is achieved analytically but the final equation in the crack increment 

has to be solved numerically. 

The failure remote stresses and the finite crack advancements, i.e. the solutions of system (28), 

are given in Fig.6b and 6c respectively, according to the different weight functions provided by 

Eqs.(29). Depending on the choice of the weight function, the trend of crack increment can be either 

increasing, constant or decreasing with the crack length (see Fig.6c). Obviously, the failure remote 

stress is always monotonically decreasing (Fig.6b): all the curves start from the tensile strength and 

tend to LEFM for large cracks. This aspect is particularly evident in the bi-logarithmic plot of 

Fig.6d, where one clearly sees that plots related to different weight functions share the same small 

and large size asymptotes. On the other hand, it is clear that failure stress predictions vary in 

between, and that weight functions higher in the neighborhood of the origin (i.e. closer to the crack 

tip) provide lower failure stress predictions. 

 

3.2 Effect of the domain/position of the weight function  

 

In this latter case, we fix the weight function shape but let its domain or its position vary. As an 

example, we can take a uniform weight function whose domain is more or less large according to 

the value of the parameter p: 

 

 

1
, 0

0 elsewhere

p t
pt


 

  



 (30) 

 

The higher is p, the smaller the domain where stress is averaged, the lower the failure stress 

expected. For instance, p = 2 means averaging the stress over a length equal to half the finite crack 

step. 

A second possibility is to choose the Dirac delta function as the weight function, but placed in 

different points according to the p value: 
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   1t p t     (31) 

 

p = 1 corresponds to Leguillon’s FFM version (for monotonically decreasing stresses), when the 

stress is required to exceed the tensile strength all over the crack increment . On the other hand, 

taking p > 1 means that fracture propagates by a finite step  if the discrete energy balance is 

fulfilled and the stress is larger than the tensile strength over a fraction 1/p of the crack increment . 

Of course, the higher is p, the easier is satisfying the stress requirement and the lower the expected 

failure stress. Conversely, taking p < 1 means that the discrete energy balance needs to be fulfilled 

for crack increments  equal to a fraction p of the length where the stresses exceed the tensile 

strength, thus leading to higher failure stress predictions.  

These expected behaviors are easily checked by substituting Eq.(31) into system (28), whose 

solution yields the following cubic equation in the dimensionless crack increment: 

 

22( ) (2 )(2 )p p p            (32) 

 

which generalizes the one provided in Cornetti et al. (2016) for p = 1. The corresponding failure 

stresses are then obtained, e.g., by the second equation in system (28). The solutions are plotted in 

Fig.7 in terms of failure stress (Fig.7a) and finite crack increment (Fig.7b) vs. crack length; in this 

latter case, as in the previous subsection, the trend can be either increasing, (approximately) 

constant or decreasing depending on the weight function (i.e., in the present case, on the parameter 

p). It is evident that increasing p the failure stress decreases and the finite crack step increases. 

Noteworthy, as p  0, the failure stress tends to the minimum between the tensile strength c and 

the LEFM prediction 
f IcK a   ; correspondingly, the finite crack increment tends to vanish for 

a > lch/, i.e. the discrete energy balance becomes infinitesimal. 

Finally, for what concerns the finite crack step, it is worth noting that it tends to the constant 

value 2/lch when the crack vanishes independently of the p value. Conversely, for very large 

cracks, the finite crack increment  tends to the asymptotic value plch/(2), i.e. the region where 

the stress exceeds the tensile strength (i.e. /p) tends to the constant value lch/(2) independently 

from p, as highlighted in Fig.7c. 

 

 

4. Correspondence rules between weight functions and cohesive laws 
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Although based on different assumptions, CCM and FFM usually provide very similar results 

because they are based on the same material parameters (fracture energy and tensile strength) and 

they both require the same amount of (surface) dissipated energy. To the authors’ best knowledge, 

significant discrepancies may occur, especially for the point-wise FFM version, only for very small 

structures (i.e. in the small-scale asymptote in a size effect analysis) when the crack step / process 

zone tend to cover the whole ligament (Cornetti et al., 2006). Indeed, this represents a case of little 

practical interest and still controversial from a theoretical point of view (for a review on the subject 

see e.g. Carpinteri et al., 2006). On the other hand, as evident also from the analysis carried out in 

the present paper, the CCM solution is much more troublesome to be achieved with respect to the 

FFM one. Thus, FFM can be seen either as an effective alternative approach to CCM or as a 

suitable tool for preliminary sizing, restricting the use of the computationally demanding CCM to 

the last stage of the structural project. 

Aim of the present section is to provide some empirical rules matching CCM and FFM solutions 

in the best way. According to what presented in the previous section, this can be achieved either by 

properly shaping the weight function or by varying its domain/position. 

Up to now, an excellent agreement has been observed between these two pairs: CCM with a 

Dugdale cohesive law and FFM with a point-wise stress criterion (Henninger et al., 2007; Cornetti 

et al., 2016); CCM with a linear softening and FFM with an average stress condition (Cornetti et al., 

2012; Rosendahl et al., 2017). Starting from this observation, we may formulate the following 

conjecture: CCM and FFM predictions match (approximately) each other if the weight function is 

the derivative of the cohesive law with opposite sign. In formulae: 

 

( ), 0 1
( )

0 elsewhere

f t t
t

  
  


 (33) 

 

Eq.(33) implies giving a heavier weight to the stresses located where the cohesive law is steeper. 

Actually, Dugdale cohesive law presents a sudden stress drop and (the opposite of) its derivative (in 

dimensionless terms) is the Dirac delta function, whereas the derivative of the linear softening 

cohesive law is the unit function; thus the matching already observed in the Scientific Literature is 

respected by Eq.(33). Wishing to see if it works also for other pairs, we solved the FFM system (28) 

for weight functions given by Eqs. (22) and (33), i.e.: 

 

 
1

( ) 1
n

t n t


    (34) 
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and compared the FFM solutions with the CCM solutions obtained in Section 2 (that is, for n = 0, 

0.5, 1, 2, 4). The corresponding pairs are given in Table 1 (columns 2 and 3), the cohesive laws 

being plotted in Fig.4a and the weight functions in Fig.8a. The FFM and CCM failure stress 

solutions are drawn in Fig.8b. It is evident the good agreement (almost perfect for n = 2), the 

difference between corresponding pairs being always smaller 6 %. Finally, in Fig.8c the finite crack 

increment is plotted vs. the crack length. Although the FFM crack increments and the CCM process 

zone are definitely different quantities (as expected, since they possess different physical 

meanings), the comparison between Fig.5b and Fig.8c clearly shows that they share the same trend: 

monotonically decreasing for n equal to 0 and 0.5, approximatively constant for n = 1 and 

increasing for n equal to 2 and 4. 

The matching between CCM and FFM can be improved also by varying the parameter p in the 

FFM approach provided in Section 3.2. In this case, we simply looked for the p value providing the 

better agreement with the CCM solutions given in Section 2 for different n values: results are 

presented in Table 1 (columns 3 and 4). The comparison between the CCM and FFM failure 

stresses are given in Fig.9a, whereas the FFM crack increments are provided in Fig.9b. It is 

remarkable the excellent agreement between the curves in Fig.9a (differences between 

corresponding pairs always below 4%, and significant only for very small crack lengths) as well as 

the similar trends shown by the FFM crack increments in Fig.9b and the CCM process zones in 

Fig.5b. 

Interpolating the discrete results of Table 1, we propose the following correspondence rule 

between the parameters p and n: 

 

2 3 1.5  5.5 1.06  0.070p n n n     (35) 

 

The interpolation function (35) is plotted in Fig.10. It is interesting to observe that for the Dugdale 

CCM (n = 0), the best agreement is obtained if we require that the stress exceeds the tensile strength 

not over the whole crack step  (as in Leguillon’s version) but only over about 2/3  (p  1.5). 

Furthermore, for softening cohesive laws, the fraction of the crack increment where stress must 

exceed the tensile strength can be really small (e.g. /9 for a parabolic softening, i.e. n = 2). 

Before concluding, it is worth observing that the proposed correspondence rules have been 

checked only for the Griffith crack geometry; further investigations are needed to check if they 

work also for other (finite) geometries. Nevertheless, our feeling is that relationships given by 

Eqs.(33) and (35) have a broader validity, at least for mode I problems in homogeneous linear 

elastic isotropic materials. In fact, both CCM and FFM are able to catch the effect of 
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boundaries/finite size since both the process zone and the finite crack advancement are structural 

(and not merely material) parameters. As a preliminary result, here we simply provide a couple of 

examples for finite size geometries. The former one refers to Three Point Bending cracked 

specimens: the relative crack depth varies between 0.05 and 0.5 (see fig. 11a), while specimen 

height is about four times Irwin’s length (relatively small specimens). CCM data are taken from 

Carpinteri & Colombo (1989) and are related to a linear softening cohesive law. The FFM 

predictions were obtained (by exploiting the SIF given in Tada et al. (2000) and the stress field 

provided in Karihaloo & Xiao (2001)) by means of the proposed correspondence rules, i.e. with a 

constant weight function and with p equal to 6. It is evident the excellent agreement, while LEFM 

provides significantly higher nominal failure stresses. The latter example refers to Three Point 

Bending plain specimens, highlighting the size effect on the flexural strength (fig. 11b). As above, 

CCM data are taken from Carpinteri & Colombo (1989) and relate to a linear softening cohesive 

law, while we used simple beam theory for the stress field to be used in the FFM approach. Since 

there is no crack, LEFM is not able to predict any failure; on the other hand, theory of critical 

distances (requiring that the average stress over the material length  = [(2/)  lch] exceeds the 

tensile strength c) provide an unrealistic infinite strength as the specimen height tends to . On the 

other hand and noteworthy, the trend provided by FFM and CCM is still similar for sizes lower than 

lch, although the asymptotic limit for vanishing size is the same only if one takes p = 3 in the FFM 

approach. 

Extracting the cohesive law parameters from experimental data is not an easy task (see e.g. Xu et 

al. 2015); the same occurs with the extended FFM model we propose. Which are the best 

experiments to determine the extended FFM parameters is a problem we will not address in the 

present paper. Here, we simply observe that, being the FFM approach easier to apply with respect to 

the CCM, also getting an estimate of the FFM parameters from experimental data fitting is 

relatively less complicated. Moreover, by means of the correspondence between CCM and FFM 

given in the present manuscript, one can gather also some indirect information about the cohesive 

law shape and parameters. In this sense, FFM has been already used by Martin et al. (2016) to get a 

first estimate of the linear softening cohesive crack model parameters (for the description of edge 

debonding in a bimaterial specimen). 

 

5. Conclusions 

 

In the present paper, we have tried to highlight similarities, differences and correspondences 

between the FFM approach and the CCM. Although only one, ideal, geometry is considered, we 
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have provided the solution according the two models in an almost analytical fashion, thus allowing 

a deep insight to the comparison. 

With respect to previous work available in the Scientific Literature, the main novelty here is a 

generalization of the FFM approach obtained by introducing a weight function into the stress 

condition. Then, weight functions are used to achieve a good match with the CCM predictions: a 

nice agreement is found if suitable pairs of cohesive laws and weight functions are chosen. More in 

details, CCMs showing cohesive laws with earlier softening usually match satisfactorily with FFM 

stress conditions characterized by weight functions higher close to the crack tip and vice-versa. The 

reason for this is that a quick decay of the cohesive stresses (at constant fracture energy, meaning 

the presence of long tails) implies a large process zone, with relatively low stresses and, finally, a 

relatively low failure load according to the CCM approach. Analogously, a higher weight for the 

stresses close to the tip means a larger lower bound for the admissible crack increment according to 

the stress condition. This implies larger finite crack steps with lower stresses and, finally, lower 

failure loads according to the FFM criterion. 

Summarizing, the results shown in the present paper prove once more the soundness of the Finite 

Fracture Mechanics approach, alone or coupled with the CCM. In this latter case, FFM can be 

useful for preliminary sizing in structural design, letting the CCM to refinements, or for providing a 

first estimate of the CCM parameters when interpreting experimental tests. 

 

 

6. Appendix 

 

Functions h0 and h1 are given by: 
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Through integration by parts and suitable analytical manipulations, it is possible to achieve the 

following recursive formula providing the generic function hi as a function of hi2 (i  2): 
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(A.3) 

 

where the integrals at the right hand side can be found in closed form in classical Table of Integrals 

handbooks. 

 

 

Figure and table captions 

 

Figure 1. Crack Opening Displacement for a crack of length 2a in an infinite slab subjected to: a 

remote uni-axial stress 

 orthogonal to the crack (a); a pair of forces P acting on the crack faces 

(b). 

 

Figure 2. Cohesive crack model for a crack of length 2a in an infinite slab subjected to a remote 

uni-axial stress 

: details of the process zone and of the cohesive stresses (a); generic cohesive law 

(b).  

 

Figure 3. Normalized cohesive stresses and opening displacement within the process zone for  = 1 

and linear softening; real crack tip on the left ( = 1) and fictitious crack tip on the right ( = ): (a) 

 = 1.691, corresponding to the maximum remote stress (f = 0.478 c); (b)  = 1.899, 

corresponding to real crack growth onset. 

 

Figure 4. Cohesive laws with power law softening for: constant tensile strength and constant critical 

displacement (a); constant tensile strength and constant fracture energy (b). Cohesive laws are 

plotted for the following power law exponent values: n = 0, 0.5, 1, 2, 4. 

 

Figure 5. Failure stress vs. crack length (a) and process zone size (at 
 

= 
f
) vs. crack length (b) for 

cohesive laws with different power law exponent (n = 0, 0.5, 1, 2, 4). 

 

Figure 6. Stress weight functions (a); failure stress vs. crack length (b); finite crack advancement vs. 

crack length (c); failure stress vs. crack length, bi-logarithmic plot (d). Plots in (b,c,d) refer to 

weight functions in (a) having the same dashing: (t) = 3(1t)
2
, dotted line; (t) = 1, continuous 

line; (t) = 6t(1t), short-dashed line; (t) = 3t
2
, dot-dashed line; (t) = (1t), long-dashed line. 
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Figure 7. Failure stress vs. crack length (a) according to FFM with different p values (p = 0.01, 0.3, 

1, 4, 12); finite crack advancement vs. crack length (b); length where stress exceeds 
c
 vs. crack 

length (c). Curves with the same dashing refer to the same p value. 

 

Figure 8. Stress weight functions (a); failure stress vs. crack length according to FFM (continuous 

lines) and CCM (dotted lines) (b); finite crack advancement vs. crack length (c). Curves correspond 

to the following values: n = 0, 0.5, 1, 2, 4. 

 

Figure 9. Failure stress vs. crack length (a) according to FFM – continuous lines – and to CCM – 

dotted lines; finite crack advancement vs. crack length (b). FFM and CCM plots correspond 

respectively to the following values: p = 1.5, 4, 6, 9, 11 and n = 0, 0.5, 1, 2, 4. 

 

Figure 10. Correspondence between the power law exponent n of the cohesive law and the 

parameter p defining the position of the (Dirac delta) weight function. 

 

Figure 11. Dimensionless nominal stress at failure vs. relative crack depth for TPB cracked beams 

for h/lch = 4.14 (a): LEFM (magenta line); FFM1, with uniform weight function (green line); FFM2, 

with Dirac weight function having p = 6 (blue line); CCM, with linear softening (black dots – from 

Carpinteri & Colombo, 1989). Nominal stress at failure vs. size, dimensionless plot (b): average 

stress criterion (red line); FFM1, with uniform weight function (green line); FFM2, with Dirac 

weight function having p = 6 (blue line); FFM3, with Dirac weight function having p =3 (light blue 

line); CCM, with linear softening (black dots – from Carpinteri & Colombo, 1989). 

 

Table 1. Correspondence between CCM cohesive laws of power law type (column 3) and FFM 

weight functions defined on the interval 0 < x <  (column 2) or defined as Dirac delta functions at 

different locations (column 4). 
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Table 1. Correspondence between CCM cohesive laws of power law type (column 3) and FFM 

weight functions defined on the interval 0 < x <  (column 2) or defined as Dirac delta functions at 

different locations (column 4). 
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Figure 1. Crack Opening Displacement for a crack of length 2a in an infinite slab subjected to: a 

remote uni-axial stress 

 orthogonal to the crack (a); a pair of forces P acting on the crack faces 

(b).  
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Figure 2. Cohesive crack model for a crack of length 2a in an infinite slab subjected to a remote 

uni-axial stress 

: details of the process zone and of the cohesive stresses (a); generic cohesive law 

(b).  
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Figure 3. Normalized cohesive stresses and opening displacement within the process zone for  = 1 

and linear softening; real crack tip on the left ( = 1) and fictitious crack tip on the right ( = ): (a) 

 = 1.691, corresponding to the maximum remote stress (f = 0.478 c); (b)  = 1.899, 

corresponding to real crack growth onset. 
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Figure 4. Cohesive laws with power law softening for: constant tensile strength and constant critical 

displacement (a); for constant tensile strength and constant fracture energy (b). Cohesive laws are 

plotted for the following power law exponent values: n = 0, 0.5, 1, 2, 4. 
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Figure 5. Failure stress vs. crack length (a) and process zone size (at 
 

= 
f
) vs. crack length (b) for 

cohesive laws with different power law exponent (n = 0, 0.5, 1, 2, 4). 
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Figure 6. Stress weight functions (a); failure stress vs. crack length (b); finite crack advancement vs. 

crack length (c); failure stress vs. crack length, bi-logarithmic plot (d). Plots in (b,c,d) refer to 

weight functions in (a) having the same dashing: (t) = 3(1t)
2
, dotted line; (t) = 1, continuous 

line; (t) = 6t(1t), short-dashed line; (t) = 3t
2
, dot-dashed line; (t) = (1t), long-dashed line. 
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Figure 7. Failure stress vs. crack length (a) according to FFM with different p values (p = 0.01, 0.3, 

1, 4, 12); finite crack advancement vs. crack length (b); length where stress exceeds 
c
 vs. crack 

length (c); dimensionless plots. Curves with the same dashing refer to the same p value. 
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Figure 8. Stress weight functions (a); failure stress vs. crack length according to FFM (continuous 

lines) and CCM (dotted lines) (b); finite crack advancement vs. crack length (c). Curves correspond 

to the following values: n = 0, 0.5, 1, 2, 4. 
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Figure 9. Failure stress vs. crack length (a) according to FFM – continuous lines – and to CCM – 

dotted lines; finite crack advancement vs. crack length (b). FFM and CCM plots correspond 

respectively to the following values: p = 1.5, 4, 6, 9, 11 and n = 0, 0.5, 1, 2, 4. 
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Figure 10. Correspondence between the power law exponent n of the cohesive law and the 

parameter p defining the position of the (Dirac) weight function. 
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Figure 11. Dimensionless nominal stress (6P/h) at failure vs. relative crack depth for TPB cracked 

beams for h/lch = 4.14 (a): LEFM (magenta line); FFM1, with uniform weight function (green line); 

FFM2, with Dirac weight function having p = 6 (blue line); CCM, with linear softening (black dots 

– from Carpinteri & Colombo, 1989). Nominal stress at failure vs. size, dimensionless plot (b): 

average stress criterion (red line); FFM1, with uniform weight function (green line); FFM2, with 

Dirac weight function having p = 6 (blue line); FFM3, with Dirac weight function having p =3 

(light blue line); CCM, with linear softening (black dots – from Carpinteri & Colombo, 1989). 
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