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of different height
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Abstract. A three-dimensional formulation is proposed to analyze the lateral loading distribution of
external actions in high-rise buildings. The method is extended to encompass any combination of
bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of
Timoshenko-Vlasov’s theory of sectorial areas. More in detail, the proposed unified approach is a tool for
the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and
allows to better understand stress and strain distributions in the different bearing elements if compared to
a finite element analysis. Numerical examples, describing the structural response of tall buildings
characterized by bracings with different cross-section and height, show the effectiveness and flexibility of
the proposed method. The accuracy of the results is investigated by a comparison with finite element
solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements.

Keywords: structural behaviour; modelling methods; tall buildings; lateral loading distribution; thin-
walled cross-section; Timoshenko-Vlasov’s theory; finite element method

1. Introduction

From the structural viewpoint, tall building means a multi-storey construction in which the effects

of horizontal actions and the need to limit the relative displacements take on primary importance

(Taranath 1988, 2005). A profound understanding of the force flow in these complex structural

systems is often very difficult, and a huge commitment in terms of design, technology and

economic resources is required. While in the design of low-rise structures the strength requirement

is the dominant factor, with increasing height, the importance of the rigidity and stability

requirements to be met to counter wind and earthquake actions grows until they become the

prevailing design factors (note that the latest skyscrapers rise to over 800 m, the tallest of all being

“Burj Khalifa Dubai” tower in Dubai, 828 m high). For this reason, the traditional solutions

providing for load-bearing main and secondary parts tend to be forsaken in favour of a global

approach, whereby the structure is conceived in a unitary fashion, i.e., as a single cantilever beam or

a system of cantilevers projecting out from the foundations. At any rate, the key issue in structural

design continues to be the choice of an appropriate design model, that is able to reproduce faithfully
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the actual conditions of a structure.

Concerning the model choice, over the last three decades, it seems that a large part of the

engineering community has followed a path towards the use of Finite Element (FE) models also in

the early stage of design. These models can take into account any level of detail, since they model

the structure in its entirety. However, as remarked by several Authors (Howson 2006, Steenbergen

and Blaauwendraad 2007), they have their drawbacks. Even using powerful computers, the

modelling is usually very demanding and the lengthy and time-consuming procedure of handling all

the data can always be a source for errors. In addition and most importantly, because of the

complexity of the results, they are difficult to be interpreted and it is not easy to understand from

FE simulations which structural parameters govern the response of the structure and the interaction

among its elements, or clearly to identify the paths of force flow in the structure. In a sense, the

importance of the key structural elements is somehow concealed behind the great number of input

and output data. As remarked by Howson (2006), the use of FE models is not in question for the

detailed design and analysis, but the development of such a model at an early stage in a design

process can be not only time consuming but also unproductive, if used during a period of rapid

evolution of the concept.

On the other hand, the use of analytical models seems to set a reverse trend. Simplified

procedures relying on carefully chosen approximations, in fact, cannot be renounced to fully

understand the complex behaviour of high-rise structures. A simplified global model, in fact, can

offer a number of potential advantages: data preparation and analysis is definitely faster; the

modelling procedures are likely to be simpler and more transparent, thus less prone to be a potential

source of errors; the accuracy, although not as high as in FE simulations, is sufficient for the

preliminary design stage. Most importantly, the use of this kind of procedures offers a clear picture

of the structural behaviour, allowing to gain insight into the key structural parameters governing the

tall building behaviour.

The earliest models, developed in the 1960’s and 1970’s, addressed the case of shear-wall versus

frame interaction; among them we could cite the approaches by Khan and Sbarounis (1964), Coull

and Irwin (1972), Heidebrecht and Stafford Smith (1973), Rutenberg and Heidebrecht (1975),

Mortelmans et al. (1981). In all these models, however, only one degree of freedom per storey is

considered, and the torsional problem is treated separately.

Most of the models for the analysis of coupled shear wall structures are based on the continuum

medium technique. The principle of the method is to replace the effect of individual beams or slabs,

which interconnect the walls at each floor, by continuously distributed shear forces, that concur to

stiffen the structural behaviour. In this framework, the whole structure is idealized as a single shear-

flexural cantilever. This method was proposed in the pioneering papers by Rosman (1964, 1965,

1966), Beck et al. (1968), Beck and Schäfer (1969). According to the development of the tall

building typologies, these models were devoted to framed wall structures, as in the papers by

Stamato and Mancini (1973), Gluck and Krauss (1973), as well as to framed-tube structures, as in

the papers by Khan (1974), Coull and Bose (1977) among others. The continuum medium technique

has then been extended to other structural typologies (Stafford Smith and Coull 1991, Hoenderkamp

and Snijder 2000, Lee et al. 2008). Moreover, the effects of rigid beams or slabs on the distribution

of the forces between shear walls have been further investigated by Fischer and Kasal (2009). In

their analysis the stiffness variation of resistant walls, due to imperfections or openings, is taken into

account by means of reduction factors.

A different research direction, derived from aerospace engineering, is that based on subdivision of
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the structure into substructures; it is somehow in between the simplified models and the FE

approach, since the substructures are used to formulate super-elements, either by condensation or by

analytical procedures with exact solutions. Among others, we could cite the papers by Leung

(1985), Leung and Wong (1988), Wong and Lau (1989), as well as the so-called finite storey

method (FSM) by Pekau et al. (1995, 1996). More recent works include, among others, the

approaches presented by Kim and Lee (2003), Steenbergen and Blaauwendraad (2007).

The main problem with all these simplified models is the lack of generality, since the same

formulation often cannot be used to analyse buildings with different underlying structural

typologies. In addition, several of them consider two-dimensional plane structures. However, not all

buildings can be modelled as plane structures, especially in the case of very complex shapes. With

the aim at acquiring insight into the effects of the stability element typologies and arrangements in

tall buildings within a unified framework, and the capability of modelling complex structures and

different typologies, in this paper we propose a three-dimensional formulation based on the work by

Carpinteri and Carpinteri (1985). The formulation is extended to encompass any combination of

bracings, including bracings with open thin-walled cross-sections, which are analyzed in the

framework of Timoshenko-Vlasov’s theory (Timoshenko 1936, Vlasov 1961) of sectorial areas, and

according to the approach by Capurso (1981), as recently proposed by Carpinteri et al. (2010).

Numerical examples, investigating the structural response of tall buildings characterized by bracings

with different cross-section and height, show the effectiveness and flexibility of the proposed

approach. Furthermore, the accuracy of the results is investigated by a comparison with FE

solutions, in which the bracings are modelled as three-dimensional structures by means of shell

elements.

2. Analytical formulation

The general formulation of the problem of the external lateral loading distribution between the

bracings of a three-dimensional civil structure, originally presented by Carpinteri and Carpinteri

(1985), will be revisited in this section. The structure is idealized as consisting of M bracings

interconnected through floors undeformable in their planes and the axial deformation of bracings is

not considered. With these hypotheses, the floor movement can be expressed by three generalized

coordinates: the two translations, ξ and η, in X- and Y-direction of the global coordinate system

origin (Fig. 1) and the floor rotation, ϑ. If N is the number of storeys, the external load will be

represented by a 3N-vector f, whose elements are three elementary loads for each floor and, more

exactly, two shear forces, px and py, and the torsional moment, mz. In the same way, the internal

loading transmitted to the i-th element will be represented by a 3N-vector fi and obtained from the

preceding f through a pre-multiplication by a distribution matrix. Let pi be the 2N-vector

representing the shear-loadings px and py, on the i-th element in the global coordinate system XY

(Figs. 1 and 2), and mi the N-vector representing the torsional moments, so that

(1)

The internal loadings fi transmitted to the i-th bracing and related to the global coordinate system

XY are connected with the same loadings fi
* related to the local coordinate system Xi

*Yi
* (the origin

fi
pi

mi⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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of this system is in the shear centre Ci and the Xi
*Yi

* axes are the principal ones, see Figs. 1 and

2(b)):

(2)

(3)

where the superscript * is used to indicate the loadings in the local coordinate system Xi
*Yi

*, Ni is

pi

*
Nipi=

mi

*
mi ψi pi uz⋅×–=

Fig. 1 Global and local coordinate systems. The Z-axis completes the right-handed global system XYZ and
Zi* completes the right-handed local system Xi

* Yi
* Zi

*.

Fig. 2 Internal loadings fi (transmitted to the i-th bracing) in the global coordinate system (a); degrees of
freedom of the i-th bracing in the local coordinate system Xi

*Yi
* Zi

*, axonometry and top view (b).
Note that the highest floor is indicated with 1 and the lowest with N.
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the orthogonal matrix of transformation from the system XY to the system Xi
*Yi

*, ψi is the

coordinate-vector of the origin of the local system Xi
*Yi

* in the global one XY, uz is the unit vector

in the Z-direction (note that  is a scalar triple product). The orthogonal matrix Ni is

represented as

(4)

where each element represents a diagonal N × N-matrix and ϕ is the angle between the Yi
*-axis and

the Y-axis (Fig. 1).

Eqs. (2) and (3) may be represented in the matrix form

(5)

where

(6)

I is the identity matrix, 0 the null matrix and the N × 2N-matrix Ci
T is defined as

(7)

where each element is a diagonal N × N-matrix and (xi, yi) are the components of vector ψi.

The displacements δi in the global coordinate system XY are then connected with the

displacements δi
* in the local system Xi

*Yi
*

(8)

where

(9)

The internal loadings fi
* are connected with the displacements δi

* through the relation

(10)

where Ki
* is the condensed stiffness matrix in the local system. Recalling Eqs. (5) and (8), we get

(11)

Pre-multiplying both the members by the inverse of Ai

(12)

it follows that the stiffness matrix in the global system for the i-th bracing is

(13)

where

ψi pi uz⋅×

Ni
ϕcos ϕsin

ϕsin– ϕcos
=

fi
*

Aifi=

Ai

Ni 0

Ci

T
– I

=

Ci

T
yi–  xi[ ]=

δi

*
Biδi=

Bi
Ni 0

0 I
=

fi
*

Ki

*
δi

*
=

Aifi Ki

*
Biδi=

fi Ai

1–
Ki

*
Bi( )δi=

Ki Ai

1–
Ki

*
Bi=
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(14)

The displacement 3N-vector δi of the i-th element is connected with the displacement 3N-vector δ

of the rigid floors by the relation

(15)

where the transformation 3N × 3N-matrix Ti is

(16)

and the 2N × N-matrix Ci is defined in Eq. (7).

Eq. (12) can be rewritten

(17)

where = KiTi is the stiffness of the i-th element with respect to the floor displacements. For the

global equilibrium we have

(18)

(19)

where  is the global stiffness matrix of the system. Recalling Eqs. (17) and (19), we get

(20)

and then

(21)

Eq. (21) solves the problem of the external loading distribution between the resistant elements of

a building. It is formally analogous to the equation for the distribution of a force between different

in-parallel resistant elements in a plane problem. In fact, the distribution matrix  is the

product of the partial stiffness matrix by the inverse of the total stiffness matrix, as well as in the

plane problem the distribution factor is the product of the partial stiffness by the inverse of the total

stiffness. The sum of the distribution matrices is equal to the unit matrix. Details on the

condensation procedure for the computation of the stiffness matrices according to the de Saint

Venant theory of beams with closed cross-section can be found in Humar and Kandhoker (1980).

On the other hand, it can be observed that the above presented formulation is general and can be

extended to encompass different kind of structural elements. To this aim, a procedure to compute

the stiffness matrices for open thin-walled cross-sections is proposed in the next section.

Ki

* Kpi

*
0

0 Kmi

*

=

δi Tiδ=

Ti
I Ci

0 I
=

fi KiTiδ Kiδ= =

Ki

fi
i 1=

M

∑ Kiδ
i 1=

M

∑=

f Kδ=

K

δ Ki

1–

fi K
1–

f= =

fi KiK
1–

f=

KiK
1–
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3. Stiffness matrix of open thin-walled bracings

The behaviour of open thin-walled cross-sections is treated according to the Timoshenko-Vlasov

torsion theory of beams characterized by the presence of the warping stiffness (Timoshenko 1936,

Vlasov 1961). With reference to Figs. 1 and 3, let us consider a generic beam in its local system

Xi
*Yi

*Zi
*. If the beam sections are undeformable in their planes, the section movements can be

expressed by three displacements: the two translations ξι

* and ηi
* (in X*- and Y*-direction of the

local coordinate system origin, see Fig. 2) and the floor rotation ϑ i
*. Under the customary

assumption that the lateral edges of the beam are free from shear forces and the external loads are

distributed transverse flexural loads, px(z) and py(z), and torsional moments, mz(z), only, so that the

longitudinal force N at any value of z is zero, according to the analytical approach by Capurso

(1981), it can be shown that the following relations, written in synthetic matrix form, hold

(22)

(23)

if we introduce the following vectors

mi

*
z( ) EJiδi

*″
z( )–=

ti
*

z( ) EJiδi

*″′
z( )–=

Fig. 3 Capurso’s approach (1981): displacements of the i-th open thin-walled bracing in the local coordinate
system Xi

*Yi
*Zi

*
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,   ,   (24)

and the matrix of inertia

(25)

where Mx(z) and My(z) are the functions representing the bending moments along the bracing, B(z)

is the bimoment (Timoshenko 1936, Vlasov 1961), Tx(z) and Ty(z) are the shear forces, Mz(z) is the

torsional moment, E is the Young’s modulus, and the apex ' corresponds to derivation with respect

to the axial coordinate z. Jxx, Jxy and Jyy are the second order moments of inertia referred to the

barycentre of the cross-section. Jωω is the sectorial moment of inertia, and Jxω and Jyω are the

sectorial products of inertia referred to the shear centre of the cross-section.

By further deriving Eq. (23) we get

(26)

where fi
*(z) is a 3-vector containing the external load distributions. 

Since the matrix of inertia Ji is symmetric and positive definite, except for some anomalous cases

(detailed by Capurso 1981), Eq. (26) can be inverted and the components of vector δi
*IV can be

computed

(27)

Considering Eq. (27) and integrating it with the appropriate boundary conditions, it is possible to

obtain the relationship between the applied loads and the displacements, i.e., the stiffness matrix in

the local system to be used in the general formulation proposed in the previous section. When the

external loads are concentrated forces at each floor level, instead of distributed loads, Eq. (27) is no

longer valid at the floor level, where discontinuities are present. As a result, N equations can be

written, one for each field delimited by a couple of subsequent storeys, having the following form

(28)

In this case, the integration process should be performed by integrating the N equations like Eq.

(28), with the boundary condition and the (N – 1) conditions of continuity between adjacent fields.

More in detail, the boundary condition for the first step of integration is

(29)

δi
*

ξi

*

ηi

*

ϑi

*⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= mi

*

Mi y,

*

Mi x,

*

Bi

*⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= ti
*

Ti x,

*

Ti y,

*

Mi z,

*⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Ji

Jyy Jyx Jyω

Jxy Jxx Jxω

J
ωy J

ωx J
ωω

=

fi
*

z( ) EJiδi

*IV
z( )=

δi

*IV
z( ) 1

E
---Ji

1–
fi
*

z( )=

δi

*IV
z( ) 0=

δi
*″′

0( )
1

E
---– Ji

1–
fi
*

0( )=
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On the other hand, the conditions of continuity permit to introduce the applied loads, as follows

(see Fig. 4)

(30)

where j is the number of the considered floor, and the subscript j, j ± 1 represents the range of

validity of the function. The boundary conditions for the subsequent steps are

    

(31)

where z = 0 corresponds to the free-end of the bracing, and z = H is the clamped end. The

corresponding conditions of continuity are given by the following expressions

      

(32)

δi

*″′
z j( )( )j j 1+, δi

*″′
z j( )( )j j 1–,

1

E
---– Ji

1–
fi
*

z j( )( )=

δi
*″

0( ) 0=

δi

*′
H( ) 0=

δi
*

H( ) 0=

δi

*″
z j( )( )j j 1–, δi

*″
z j( )( )j j 1+,=

δi

*′
z j( )( )j j 1–, δi

*′
z j( )( )j j 1+,=

δi

*
z j( )( )j j 1–, δi

*
z j( )( )j j 1+,=

Fig. 4 Scheme for the introduction of the applied loads in the integration steps
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As a result of the integration process, we obtain the relation between the displacements at each

floor level δi
* and the applied concentrated loads fi

*. Therefore the compliance matrix Di of the i-th

bracing is

(33)

where the matrix  is a 3N × 3N-matrix of non-dimensional coefficients of influence determined by

integration, and hf is the storey height. Its structure is block diagonal, with three equal (full)

submatrices Q

(34)

In the case of a bracing with constant cross-section, the computation of the terms of the upper

triangular part of the N × N sub-matrix Q provides the generic term

(35)

The lower triangular part is obtained exploiting the symmetry of Q. In the case of bracings with

variable cross-section, the computation can be performed by means of the Mohr’s theorem. It is

worth noting that δi
* and fi

* in Eq. (33) are now 3 × N vectors containing the displacements and the

loads at each floor level, ordered according to the general approach presented in the previous

section.  is a 3N × 3N-matrix with nine diagonal submatrices containing the cross-section inertia

parameters

(36)

By inverting the compliance matrix Di, we finally get the expression of the stiffness matrix Ki
* in

the local system of the i-th bracing with open thin-walled cross-section

(37)

that, introduced in Eq. (10), permits bracings with open thin-walled cross-sections to be considered

in the general formulation proposed by Carpinteri and Carpinteri (1985).

4. Interaction between bracings with closed and open thin-walled cross-sections

A numerical example, chosen to show the flexibility and effectiveness of the proposed approach,

is presented in this section. The structure is an asymmetric 80-storey tube-in-tube system with

δi
* 1

E
---Ji

1–

hf

3
Qfi

*
Difi

*
= =

Q

Q
Q 0 0

0 Q 0

0 0 Q

=

qij
1

6
--- N j 1+–( )2 2N j 3i 2+–+( )=

Ji

Ji

Jyy Jyx Jyω

Jxy Jxx Jxω

J
ωy J

ωx J
ωω

=

Ki

*
Di( ) 1– E

hf

3
-----Q

1–

Ji= =
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square plane layout. The asymmetry is chosen in order to investigate both the flexural and the

torsional behaviour of the building when subjected to horizontal wind loads. As shown in Fig. 5, the

internal core is closed, whereas the external tube is made by two bracings with ‘C’-shaped open

cross-sections. The Young’s modulus is E = 3.0 × 104 MPa, the Poisson ratio ν = 0.18. The storey

height is hf = 4.0 m, corresponding to a total height H = 320 m. The geometric parameters of the

cross-sections are given in Table 1. The second order and sectorial moments of inertia are referred

to the principal axes.

Concerning the loads, in this example we consider the actions of wind only. For the sake of

simplicity, we assume constant wind pressure over the height of the structure. Due to the hypothesis

of infinite rigidity of the floors in their plane, the wind actions can be applied as a system of

Table 1 Cross-section properties for the closed thin-walled core and the external open bracings. Jxx and Jyy are
referred to the barycentre, Jωω to the shear centre

 Core ‘C’-shaped bracings

Second moment Jxx [m
4] 819.50 5440.00

Second moment Jyy [m
4] 819.50 550.00

Warping moment Jωω [m6] 0.00 154202.40

Torsional rigidity (à la de Saint Venant [m4]) 1228.80 0.65

Global coordinate xG of the shear centre [m] 0.00 ± 25.65

Global coordinate yG of the shear centre [m] –6.00 0.00

Angle ϕ [rad] 0.00 0.00; 3.14

Fig. 5 Floor plane of the example building. Tube-in-tube structure with asymmetric core
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concentrated horizontal loads passing through the barycentre of the pressure distribution. The

intensity of wind actions is computed in a simplified way by considering the reference kinetic

pressure provided by the Italian Technical Regulations (Ministero delle Infrastrutture 2008), that

adopt the same models of wind actions contained in the Eurocode 1 (European Committee for

Standardization 2002), in which the wind actions are supposed to be static and directed according to

the principal axes of the structure. According to the Eurocode 1, the reference kinetic pressure is a

function of the wind velocity vref 

(38)

The reference velocity of wind is, in turn, a function of the region and of the altitude; in this

example we suppose that the building is located in Turin (Piedmont, Italy). From the regulations we

get vref = 25.0 m/s and therefore qref = 390.62 N/m2. For the sake of simplicity, we do not consider

the exposition-, shape- and dynamic-coefficients (European Committee for Standardization 2002),

that vary depending on several parameters (roughness, shape of the building, topography, etc). The

obtained concentrated loads have the following values: F = 62.50 kN, except at the top floor of the

building, where the load is halved. In the computations, the wind force is applied in the X-direction

only.

The results are summarized in Figs. 6 and 7. In Fig. 6(a) and (b) displacements in the X-direction

and rotations at the floor levels are reported respectively; as can be seen, the flexural deformed

shape does not display any change in the curvature, whereas rotations do. An inflection point is

qref

vref

2

1.6
-------10

3–
kN m

2⁄[ ]=

Fig. 6 Displacements of the floors in the global coordinate system. Translation in (a) the X-direction; and (b)
rotation
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clearly visible at the level of floor 37 in Fig. 6(b). This fact is in tight connection with the diagrams

of the torsional moment Mz, reported in Fig. 7(a) and (b) for the internal core and the external ‘C’-

shaped bracings, respectively. Regarding the internal closed core, it can be clearly seen that the

torsional moment, related to de Saint Venant theory, displays a maximum at the level of floor 37

Fig. 7 (a) Torsion of the internal core; and (b) torsion and (c) bimoment of the external ‘C’-shaped
bracings along the building height
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and decreases below. It supports a larger part of the total moment and presents null warping

moment Mω. On the other hand, the ‘C’-shaped cross-sections display a negligible primary moment

and a large warping moment Mω. The latter changes its sign from the top of the building (where it

is negative) to the ground and shows a faster rate of increase below the floor 37. The primary

moment is negligible with respect to the warping one in the external bracings. All this can be

confirmed if we look at the bimoment B in the external ‘C’-shaped bracings (plotted in Fig. 7(c)):

we can see that the sign changes at the level of floor 37, being positive above it. Correspondingly,

the rotation diagram in Fig. 6(b) shows an inflection point at the same level, according to the

relationship between the bimoment and the second derivative of the rotation, expressed in Eq. (22).

As expected, the maximum value of the bimoment is at the ground floor, where the warping is

completely prevented, and is null at the top of the building. The longitudinal stresses generated by

the warping torsion, are evaluated by means of the following expression

(39)

where ω is the sectorial area.

The results of the analytical method are compared to those obtained with a FE analysis, where the

bracings are modelled by two-dimensional thin shell elements. As shown in Fig. 8, the two

solutions are coincident when the out-of-plane rigidity of the floor is negligible (slab thickness equal

to 1/20 of the wall thickness). Considering displacements in the X-direction and using thicker floors

σz

Bω

J
ωω

--------=

Fig. 8 Comparison between the results of the analytical method and FE solution. (a) Translation in the X-
direction and (b) torsional rotation, in the global coordinate system
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(slab thickness equal to 1/2 of the wall thickness), the FE solution is clearly stiffer than the

analytical one (Fig. 8(a)). As regards the floor rotations, the FE model with out-of-plane rigid slabs

shows more twist (Fig. 8(b)). This latter behaviour is caused by the warping of the external ‘C’-

shaped bracings, which forces the closed section to warp significantly.

The accuracy of the proposed method has been further investigated by considering different

structural arrangements and geometrical and stiffness characteristics. First, a single thin-walled

cantilever beam of total height H, having closed square cross-section with side L and thickness s, is

considered. The investigated variables are the overall slenderness, defined by the ratio H/L, and the

cross-section slenderness, defined as s/L. The comparisons are carried out in terms of displacements

of the top floor (horizontal displacement and torsional rotation). The results for horizontal forces

and torsional moments applied to the barycentre of each floor are shown in Fig. 9. The relative

error is defined as (δFE – δan)/δFE, where the pedex “an” stands for “analytical method”. In the case

of horizontal loads (Fig. 9(a)), the relative error is about 80% for very stocky bracings, due to the

large shear deformations disregarded by the analytical model, whereas it decreases up to zero for

very slender bracings. The same results are obtained for the three considered values of s/L (1:100,

1:50 and 1:20). In the case of torsional moments, the relative error is below 4% for any considered

slenderness ratio.

The same analyses have been carried out for a cantilever beam with ‘C’-shaped thin-walled cross-

section (Fig. 10). In this case, the relative error rapidly decreases for H/L varying from 1 to 7, and

then it remains close to zero, for both horizontal loads and torsional moments. Also in this case, the

cross-section slenderness ratio has a limited influence on the comparison.

Fig. 9 Relative error for the top displacement in (a) X-direction and (b) the rotation, between the proposed
method and FE analysis, for bracings of total height H, with closed cross-section
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5. Effects of bracings of different height

In this section, the interaction between bracings with different height is investigated on a structure

characterised by a symmetric plan and an abrupt change in the cross-sectional geometry along the

height, as shown in Fig. 11. In particular, the external stability walls have a reduced height relative

to the rest of the building. In this case, the external load is constituted by a system of concentrated

horizontal forces passing through the barycentre of the floor stiffness. For the sake of simplicity, a

value of 1 kN is assumed for each of the forces. Such a simple structural scheme permits to analyse

in a clear way the effects of the different height of bracings on the redistribution of the shear force

and the bending moment. 

The Young’s modulus is E = 3.0 × 104 MPa, and the Poisson ratio ν = 0.18. The maximum height

of the building is 160 m, being the number of storeys 40 and the storey height hf = 4 m. The height

of the lower part is assumed half the total height, equal to 80 m. All the bracings have the same

flexural stiffness, EJyy. The storey elements, which connect the bracings each other, are modelled to

be undeformable in their plane; whereas they have a negligible out-of-plane rigidity.

The most interesting result concerns the shear force distribution. A strong discontinuity with a

cuspidal point at the top level of the lower bracing is evidenced when different heights are

considered (see Fig. 12(a)). Such a jump in the shear distribution is due to the assumption of floor

slabs undeformable in their planes. This phenomenon, also confirmed by finite element analysis, has

not been noticed by the analysis carried out by Steenbergen and Blaauwendraad (2007) on a

structure similar to that considered in this study, whom results are reported in Fig. 12b. On the other

Fig. 10 Relative error for the top displacement in (a) X-direction and (b) the rotation, between the proposed
method and FE analysis, for bracings of total height H, with open cross-section
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Fig. 11 (a) Front view and (b) plans of the symmetric structure with bracings of different height

Fig. 12 Shear load distributions along the stability walls: (a) proposed model, (b) solution by Steenbergen and
Blaauwendraad (2007)
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hand, Steenbergen and Blaauwendraad (2007) demonstrated that such a discontinuity becomes

smoother by decreasing the in-plane floor rigidity. The results shown in Fig. 13 highlight that also

the bending moment redistributions are characterized by a discontinuity. In particular, the bending

moment acting at the level of the abrupt change in the cross-sectional geometry (floor 20 in the

considered case) is split proportionally to the bracing stiffness, independently of the difference in

height. Also in this case, according to the study by Steenbergen and Blaauwendraad (2007), we can

assert that such a discontinuity is proportional to the in-plane floor stiffness.

A reduction in the shear force exchanged by bracings at the top level of the lower wall can be

obtained by varying their relative stiffness. To this aim, we define the stiffness ratio, SR, as the ratio

between the stiffness of the higher and the lower bracing, (EJ)H/(EJ)L. The results for SR equal to 1,

10 and 100, and ∆h/H equal to 0.5 (∆h and H are defined in Fig. 11), are shown in Fig. 14 in term

of shear force. It is evident that the peak in the shear force distribution considerably decreases by

Fig. 13 Moment distributions along the stability walls: (a) the proposed model, (b) solution by Steenbergen
and Blaauwendraad (2007)
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decreasing the stiffness of the lower bracing. This is due to the decrease in the support effect that

the lower wall exerts to the higher. On the other hand, the contribution of the outer walls to the total

load carrying capacity decreases by increasing SR. Such an effect can be also deduced from the

bending moment redistribution diagrams shown in Fig. 15.

Now, the shear forces Tmax and Tground are defined, respectively, as the shear force taking place in

the considered bracing at the level of the change in the cross-sectional geometry, and that acting at

the ground level. The ratio Tmax/Tground as a function of the difference in height among the

considered bracings is plotted in Fig. 16(a) for the higher walls. In the case of SR = 1, the ratio

Tmax/Tground sensibly increases by increasing ∆h/H. In particular, for differences in height greater than

Fig. 14 Shear force distributions along bracings with difference in height equal to 50%, for three different
stiffness ratios, SR = 1, 10, 100

Fig. 15 Bending moment distributions along bracings with difference in height equal to 50%, for three
different stiffness ratios, SR
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20%, the ratio overcomes the unity, proving that the maximum shear force takes place at the level

of the abrupt change in the cross-sectional geometry instead of at the ground level, as usually

expected. On the contrary, for SR between 10 and 100, the ratio Tmax/Tground is always lower than 1.

The same results are shown in Fig. 16b for the lowest wall. In this case, for ∆h/H greater than 15%,

the maximum value of the shear force is acting at the top of the bracing, independently of the ratio

SR. It is worth noting that the total shear force at the ground level is shared between bracings

proportionally to their flexural stiffness, independently of the height of each bracing.

Finally, some interesting remarks can be drawn considering more than one change in the cross-

sectional geometry along the building height. To this aim, the four structures shown in Fig. 17(a)

are considered. They are characterised by the same total flexural stiffness at the ground level, the

same total height, and a different number of bracings: case “A” with two bracings, “B” with three

Fig. 16 Ratio between maximum and ground shear force vs. the difference in height among bracings, for
three different stiffness ratios, SR
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bracings, “C” with four bracings, and “D” with five bracings. For each case, the walls have the

same flexural stiffness, EJ, and their heights are selected so to have a uniform ∆h. The external load

is constituted by a system of concentrated horizontal forces equal to 1 kN. The lateral floor

displacements shown in Fig. 17(b) evidence a greater global stiffness in the case “D”, characterised

by five changes along the height. The shear force distributions are shown in Fig. 18, except for the

case “A”, whose diagrams are shown in Fig. 12(a). As we can see, the shear force at the ground

level is a function only of the flexural stiffness, EJ, and not of the height. In all the considered

cases, in fact, the total ground shear force is equally distributed between bracings. Then, the peaks

in the shear force distributions due to the abrupt changes in the geometry, increase by decreasing

the wall height, being the maximum at the top of the lower one. As a consequence, the most

stressed bracing results to be the lowest.

Fig. 17 (a) Structures with different changes of cross-sectional geometry; and (b) the corresponding lateral
displacements
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Fig. 18 Shear force distributions between bracings for the considered structures: “B”, “C”, and “D”
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6. Conclusions

The numerical algorithm for the lateral loading distribution between the elements of a three

dimensional civil structure (Carpinteri and Carpinteri 1985), extended in this paper by introducing

thin-walled elements with open cross-section and bracings of different height, can be employed to

predict the gross structural deformations of tall buildings with different structural typologies. The

general formulation presented in this paper offers, compared to a detailed FE simulation, ease of use

and reduced effort in preparing the model, as well as in the result interpretation, with sufficient

accuracy in the preliminary and conceptual design stage. In particular, such a global approach has

been found to provide a reliable picture of the key structural parameters governing the building

behaviour in the case of sufficiently slender bracings and floor slabs with negligible out-of-plane

rigidity. The examples presented in this paper, in fact, demonstrate the flexibility and effectiveness

of the proposed approach to study complex problems characterising the structural analysis. The first

example concerns the lateral loading distribution in tall buildings supported by bracings with closed

and open thin-walled cross-section, obeying to the Timoshenko-Vlasov torsion theory. In the second

example, taking the work by Steenbergen and Blaauwendraad (2007) as the starting point, the force

distribution in a structure with irregular shape, i.e., supported by bracings with different height and

stiffness, is analysed.

Since modern tall buildings might take any shape and can reach huge heights with a minimum of

material according to new construction techniques, the proposed algorithm is a suitable tool to face

the problems resulting from the analysis of such non-conventional structures modelled as slender

cantilever beams.
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Notations 

Ai matrix of coefficients relating the bracing internal loadings in the local system to those in the 

global system;

Bi matrix of coefficients relating the bracing displacements in the local system to those in the 

global system;

E Young’s modulus;

f vector of external applied load, in the global coordinate system;

fi vector of internal loading transmitted to the i-th bracing, in the global system;

fi
* vector of internal loading transmitted to the i-th bracing, in the local system;

Di compliance matrix of the i-th bracing;

H total building height;

hf storey height;

K global stiffness matrix referred to the global system;

Ki stiffness matrix of the i-th bracing referred to the global system;

Ki
* stiffness matrix of the i-th bracing referred to the local system;

Ji matrix of inertia of the i-th bracing;

mi
* vector containing the bending moments Mx and My, and the bimoment, B;

mz applied torsional moment;

N number of floors;

Ni orthogonal rotation matrix;

px applied horizontal load, in x direction;

py applied horizontal load, in y direction; 

Ti matrix of coefficients relating the bracing displacements to the floor displacements;

ti
* vector containing the shear forces Tx and Ty, and the torsional moment, Mz;

δ vector of floor displacements in the global system;

δi vector of displacements of the i-th bracing in the global system;

δi
* vector of displacements of the i-th bracing in the local system;

∆h difference in height between bracings;

ϕ rotation between local and global systems;

ξ displacement in the X-direction;

η displacement in the Y-direction;

ϑ rotation;

ψ coordinate-vector of the origin of the local system in the global one.


