10,633 research outputs found

    Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data

    Get PDF
    Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors

    Propagation of Small Disturbance Waves in a Fluid Flow across the Junctions between Rigid and Compliant Panels

    Get PDF
    The problem of wave propagation in a fluid flow across the junction between the rigid and the compliantpanelsin a channelhas beenstudied.In vorticalTollmien-Schlichting-type waves, thejump conditions are obtainedby the half-Fouriertransforms definedon both the sides of thejunction along withthe adjointmethod. The methoddevelopedis fairlygenericand is applicableto similarproblems. A comparison of the results obtained in the present study with those obtained from direct numerical simulations' shows good agreement

    A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls

    Get PDF
    A theory is described for propagation of vortical waves across alternate rigid and compliant panels. The structure in the fluid side at the junction of panels is a highly vortical narrow viscous structure which is idealized as a wave driver. The wave driver is modelled as a ‘half source cum half sink’. The incoming wave terminates into this structure and the outgoing wave emanates from it. The model is described by half Fourier–Laplace transforms respectively for the upstream and downstream sides of the junction. The cases below cutoff and above cutoff frequencies are studied. The theory completely reproduces the direct numerical simulation results of Davies & Carpenter (J. Fluid Mech., vol. 335, 1997, p. 361). Particularly, the jumps across the junction in the kinetic energy integral, the vorticity integral and other related quantities as obtained in the work of Davies & Carpenter are completely reproduced. Also, some important new concepts emerge, notable amongst which is the concept of the pseudo group velocity

    Direct UV observations of the circumstellar envelope of alpha Orionis

    Get PDF
    Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort

    Exploring General Gauge Mediation

    Get PDF
    We explore various aspects of General Gauge Mediation(GGM). We present a reformulation of the correlation functions used in GGM, and further elucidate their IR and UV properties. Additionally we clarify the issue of UV sensitivity in the calculation of the soft masses in the MSSM, highlighting the role of the supertrace over the messenger spectrum. Finally, we present weakly coupled messenger models which fully cover the parameter space of GGM. These examples demonstrate that the full parameter space of GGM is physical and realizable. Thus it should be considered a valid basis for future phenomenological explorations of gauge mediation.Comment: 27 pages, minor changes, typos fixed in appendix
    corecore