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1. Introduction

Low-energy supersymmetry, in its minimal incarnation as the MSSM, is probably the

most attractive candidate for physics beyond the Standard Model, since it solves the hier-

archy problem and predicts gauge coupling unification. However, the MSSM has one major

drawback, namely, its immense parameter space. Soft SUSY-breaking introduces O(100)

new parameters compared to the SM. These parameters are highly constrained by stringent

experimental limits on flavor-changing neutral currents and CP violation. A conservative

ansatz for the parameter space which is automatically consistent with flavor and CP is

known as “soft SUSY-breaking universality” (see [1] for a nice review). Here there are five

flavor-diagonal sfermion masses, three real gaugino masses, three flavor-diagonal A-terms,

and three independent real Higgs mass parameters, for a total of 14 real parameters in all.

If one accepts the hypothesis of universality, then the theoretical challenge is to construct

models of SUSY-breaking and mediation that automatically produce universal patterns of

soft parameters without fine tuning.

Gauge mediation [2-12], or the idea that SUSY-breaking is communicated to the

MSSM via the SM gauge interactions, is a promising partial solution to this challenge.1

Since the gauge interactions are flavor blind, the soft masses obtained through gauge

mediation are automatically flavor universal. However, the absence of CP phases is less

automatic in gauge mediation. Also, the Higgs µ and Bµ parameters are not generated in

pure gauge mediation, so one typically assumes that additional interactions are present to

produce these (for a recent discussion of this see [14]).

Recently in [15], gauge mediation was given a general, model-independent definition:

in the limit that the MSSM gauge couplings αi → 0, the theory decouples into the MSSM

and a separate hidden sector that breaks SUSY. It follows then that the SM gauge group

must be part of a weakly-gauged global symmetry G of the hidden sector. By studying

a small set of current-current correlators of G, it was shown that all the dependence of

the soft masses on the hidden sector could be encapsulated by three real parameters that

determine the sfermion masses, and three complex parameters that determine the gaugino

masses. This framework was called “General Gauge Mediation” (GGM) in [15]; for more

recent work on GGM, see [16-21]. In this paper we will further develop several aspects of

GGM and explore its properties and its parameter space.

1 For a review of gauge mediation from both the model building and phenomenological point

of view see [13].
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The definition of GGM must be augmented with several phenomenological and consis-

tency requirements, which we will now review. First, the fact that the gaugino masses are

complex in general gauge mediation (GGM) implies that GGM does not solve the SUSY

CP problem. So additional mechanisms (such as an R-symmetry as in [22], or having

the hidden sector be CP invariant) must be invoked to explain why the gaugino masses

are real.2 For the rest of the paper, wherever it is relevant, we will assume that such a

mechanism is at work and only consider CP invariant theories, so that the parameter space

of GGM spans R
6. With this assumption, the GGM parameter space comprises a much

smaller, but still sizeable subspace of the full “universal” soft mass ansatz.

Additionally, as in [15], we will impose a Z2 symmetry, called “messenger parity,” on

our hidden sector. In the context of messengers this is typically defined as an interchange

symmetry of the messengers combined with V → −V [6,23]. More generally, messenger

parity can be defined in terms of the gauge current and its supersymmetric partners,

without explicit reference to messengers [15]. This symmetry does not have to be imposed,

but it is typically a phenomenological necessity: messenger parity prevents dangerous

hypercharge D-terms (which could lead to tachyonic sleptons) from being generated in the

hidden sector.

Messenger parity has various other consequences, including one on the sum rules of

GGM. The fact that the five flavor-diagonal sfermion masses (m2
Q, m

2
U , m

2
D, m

2
L, m

2
E) are

determined in terms of three real numbers implies that they must satisfy two sum rules

[15]:

TrY m2 ∝ m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

Tr (B − L)m2 ∝ 2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0.

(1.1)

These sum rules are valid at the characteristic scale M of the gauge mediated model,

and they are preserved by the (one-loop) running of the soft masses in the MSSM. There

could in principle be violations to these sum rules arising at higher order in the SM gauge

couplings, coming from 3-point functions in the hidden sector. We will show in section 2

that in fact these threshold contributions satisfy the sum rules if one imposes messenger

parity on the hidden sector. Additionally, the leading log contributions at all higher orders

also satisfy the sum rules. Therefore there are no contributions at any relevant order in the

hidden sector which would violate the sum rules and they truly are predictions of GGM.

2 Of course, one can have non-zero phases in this framework as long as they are consistent

with the experimental bounds. For convenience though, we will only concentrate on CP invariant

hidden sectors.
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In [15], it was shown that the GGM parameter space is the most general that can be

populated by models of gauge mediation. However, this left open the important question

of whether models existed that could actually span this space. For instance there may

have been additional relations or inequalities satisfied by the parameters that were not

manifest from the analysis of the current-current correlators. Or it could have been that

for some regions of the GGM parameter space there was simply no field theory that could

populate it. Indeed, a quick survey of existing models of gauge mediation (e.g. the original

models of “minimal gauge mediation”[10,11]) would suggest that this could be the case,

as these models clearly do not cover the parameter space. These models are based on

a set of weakly coupled “messengers,” chiral superfields, Φi, that transform under a real

representation of the SM gauge group and couple to a field that has a SUSY breaking

F-component. This can be expressed as having a generic supersymmetric mass term for

the messengers

W = MijΦ
iΦj (1.2)

and a SUSY-breaking mass term of the form

V ⊃ fijφ
iφj + c.c. (1.3)

In [16] it was shown that in the context of such models, the right number (6) of parameters

in GGM could be realized. However, in their models the full space of GGM was not actually

spanned.

In this paper we further explore the model building possibilities in the context of

weakly coupled messengers and show that there are models that span the GGM parameter

space. This is because there can be additional contributions to the MSSM soft masses

from gauge mediation in addition to those of the form (1.3), namely “diagonal-type”[24,25]

messenger masses of the form

V ⊃ ξijφ
iφ†j (1.4)

Such terms typically arise from D-term breaking, but they can also arise from strong

hidden sector dynamics (such as in [26]) where the distinction between F-term and D-term

breaking is not obvious.

Using both (1.3) and (1.4), we demonstrate that there exist weakly coupled messenger

models which span the space of GGM. Thus there can be no additional relations for the

soft SUSY breaking parameters beyond (1.1).
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The outline of the paper is as follows. First, in section 2 we present a reformulation of

GGM that does not rely upon superspace and that leads to extremely compact formulas

for the gaugino and sfermion soft masses. Using this formalism we will demonstrate both

the UV and IR finiteness of the soft masses in GGM. We will then discuss in section

3 the dependence on the various mass scales that can enter the correlation functions.

We will further elaborate on the issues of UV sensitivity for SUSY breaking parameters,

clearing up some confusion in the existing literature regarding the interpretation of a

nonzero messenger supertrace. Finally, in section 4 we present a simple explicit model

involving weakly-coupled messengers that spans the entire six-dimensional parameter space

of GGM. This model should be viewed merely as an “existence proof” that the entire GGM

parameter space can be realized and that there are no additional hidden relations between

the parameters that are not obvious from the general formulation. In light of this we believe

that future phenomenological studies of gauge mediation should not restrict themselves to

the parameterization of minimal gauge mediation (for example see [27]), but instead should

explore the entire parameter space of GGM. This should in principle open up new avenues

for possible experimental/phenomenological studies that have not yet been explored (for

recent work in this direction, see [21]). We finish by collecting a few technical results

in two appendices. In Appendix A we will review the role of the supertrace in models

with messenger fields. We demonstrate that certain classes of models always generate a

particular sign for the supertrace in an effective field theory. In appendix B we collect

some general results for the correlation functions of models with arbitrary numbers of

messengers.

2. General Gauge Mediation: A New and Improved Formulation

2.1. Review and reformulation

In this section we wish to review the basic features of GGM. Along the way, we will

reformulate and streamline various aspects of it. This will lead to various new physical

insights, including a direct proof of the finiteness of the sfermion soft masses in GGM.

To begin, let us describe the setup. Consider a renormalizable hidden sector3 which is

characterized by the scale M and where supersymmetry is broken spontaneously. Suppose

that this hidden sector has a global symmetry group G ⊃ GSM = SU(3) × SU(2) × U(1)

3 We will consider non-UV-complete scenarios in later sections.
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that is weakly gauged. Suppose further that the only coupling to the visible sector occurs

through the SM gauge interactions (so the hidden and visible sectors decouple in the gSM →
0 limit). We will refer to this setup as general gauge mediation, and we are interested in

the visible-sector soft masses that arise. As shown in [15], all of the information in the soft

masses is encoded in two-point functions of the current superfield of the symmetry group

G.

To avoid writing all the gauge theory factors, we will assume for simplicity that G =

U(1) in this subsection. Recall now the definition of of the current superfield J

D2J = 0 (2.1)

which leads in components to

J = J + iθj − iθj − θσµθjµ +
1

2
θ2θσµ∂µj −

1

2
θ
2
θσµ∂µj −

1

4
θ2θ

2
J (2.2)

with ∂µjµ = 0.

The use of superspace is not essential. Without it, we can replace the definition of the

current superfield J (2.1) as follows. We study the hermitian operator J which satisfies

{Qα, [Qβ, J ]} = 0 (2.3)

where Qα are the supercharges, which satisfy the SUSY algebra

{Qα, Qα̇} = 2σµ
αα̇Pµ. (2.4)

Then, we can define

jα ≡ −i[Qα, J ]

jα̇ ≡ i[Qα̇, J ]

jµ ≡ −1

4
σα̇α

µ

(
{Qα̇, [Qα, J ]} − {Qα, [Qα̇, J ]}

)
,

(2.5)

and derive the current conservation by applying two supercharges to this definition of jµ

and using the SUSY algebra (2.4).

The relation between the original presentation in superspace with (2.1) and this one

is similar to the relation between the definition of chiral superfields in terms of DΦ = 0
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and the definition of chiral operators (the first component of Φ) as [Q, φ] = 0.4 As we will

now show, (2.3) proves to be extremely useful when computing current-current correlation

functions.

The correlators of interest are the nonzero current-current two-point functions

〈J(x)J(0)〉 =
1

x4
C0(x

2M2)

〈jα(x)jα̇(0)〉 = −iσµ
αα̇∂µ

(
1

x4
C1/2(x

2M2)

)

〈jµ(x)jν(0)〉 = (ηµν∂
2 − ∂µ∂ν)

(
1

x4
C1(x

2M2)

)

〈jα(x)jβ(0)〉 = ǫαβ
1

x5
B(x2M2)

(2.6)

or in momentum space,

〈J(p)J(−p)〉 = C̃0(p
2/M2)

〈jα(p)jα̇(−p)〉 = −σµ
αα̇pµC̃1/2(p

2/M2)

〈jµ(p)jν(−p)〉 = −(p2ηµν − pµpν)C̃1(p
2/M2)

〈jα(p)jβ(−p)〉 = ǫαβMB̃(p2/M2)

(2.7)

where now a factor of (2π)4δ(4)(0) is understood.

These two-point functions encode the mediation of SUSY breaking to the MSSM

gaugino and sfermion soft-masses at leading order in the gauge coupling g. Specifically,

the gaugino masses are given by

Mgaugino = g2MB̃(0). (2.8)

while the sfermion soft mass-squareds are given by

m2
sfermion = g4Y 2A (2.9)

where Y is the U(1) charge of the sfermion and A is the following linear combination of

correlators integrated over momentum:

A ≡ −
∫

d4p

(2π)4
1

p2

(
3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)
)

= − M2

16π2

∫
dy
(
3C̃1(y) − 4C̃1/2(y) + C̃0(y)

) (2.10)

4 We will not pursue it here, but it would be interesting to consider correlators of J ’s defined

by (2.3) along with any number of supercharges, in the case when SUSY is unbroken. Perhaps

there could be an interesting mathematical structure analogous to operators in the chiral ring.
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Using (2.3) and (2.5), one easily finds that formula for the gaugino mass can be

rewritten as

Mgaugino = −1

4
g2

∫
d4x 〈Q2(J(x)J(0))〉 (2.11)

where we use the notation

Q2(. . .) = QαQα(. . .) ≡ {Qα, [Qα, (. . .)]}. (2.12)

Indeed, according to (2.3)(2.5), Q2(J(x)J(0)) = 2[Qα, J(x)][Qα, J(0)] = −2jα(x)jα(0).

Similar reasoning shows that the action of four supercharges on J(x)J(0) yields

〈Q2
(Q2(J(x)J(0)))〉 = −8∂2(C0(x) − 4C1/2(x) + 3C1(x)) (2.13)

and so the formula for the sfermion mass can be rewritten as

m2
sfermion = − 1

128π2
g4Y 2

∫
d4x log(x2M2)〈Q2

(Q2(J(x)J(0)))〉 (2.14)

Note that the order of the four supercharges is not essential – a different ordering of Q and

Q leads to terms that vanish after using the SUSY algebra and momentum conservation.

Note also that the scale M appearing in (2.14) is arbitrary (i.e. the dependence on M drops

out), since according to (2.13) the integrand 〈Q2
(Q2(J(x)J(0)))〉 is a total derivative. (The

short distance behavior of the correlator, to be discussed below, guarantees that there is

no surface term.)

Let us make some brief comments on the results (2.11), (2.14). In [15] it was shown

using the SUSY algebra that when SUSY is unbroken, B = 0 and C0 = C1/2 = C1. Hence

the gaugino and sfermion masses vanish in the SUSY limit, as they must. Writing the

gaugino and sfermion masses as multiple commutators, as we have done here, makes this

fact obvious.

It is well known that when supersymmetry is broken at a scale F and the dynamics

is characterized by the scale M ≫
√
F , we can effectively describe the soft terms in an

expansion in F
M2 using spurions. Then the gaugino masses arise as an F-term and the

sfermion masses as a D-term. The expressions (2.11) and (2.14) generalize this result to

the more generic situation of F ∼ M2. The small F
M2 limit can be obtained by realizing

that in (2.11) the two Qs lead to one factor of F and in (2.14) the four Qs lead to |F |2.
Another interesting feature of the formula (2.14) is that all the information at large

momentum is contained within the OPE of J with itself. This observation has immediate
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implications about the convergence of the momentum integral in (2.10) and (2.14). In

[15] an indirect proof of the convergence of these integrals was given using the fact that

otherwise there would be no supersymmetric counterterm that could cancel a divergence

in this integral. Here we can easily give a direct proof which is intrinsic to the properties

of the hidden sector. The most singular term in the OPE J(x)J(0) is associated with the

identity operator. Since this is annihilated by the action of the supercharges in (2.14), to

get a nonzero result we must use an operator with ∆ > 0. Its coefficient is x−4+∆ and

therefore the integral (2.14) converges at small x.

Finally, let us examine the low momentum behavior of the integral in (2.10). We can

exclude any zero-momentum divergences in these integrals by invoking messenger parity

J → −J . On general grounds, any such zero-momentum poles in the current two point

functions in (2.7) must be due to massless intermediate one-particle states:

〈J (x)J (0)〉 = 〈0|J (x)|λ〉〈λ|J (0)|0〉+ ... (2.15)

Assuming that the only massless particles in the spectrum are due to spontaneously bro-

ken symmetries (bosonic or fermionic), and that messenger parity commutes with all the

symmetries of the theory, it follows that the one-point functions on the RHS of (2.15)

must vanish. Therefore massless modes can never contribute zero-momentum poles to the

current two point function, and the integral (2.10) must always converge at p = 0.

2.2. Generalization to the MSSM

Finally, let us briefly generalize the discussion from our G = U(1) toy model to the

MSSM, where G = SU(3) × SU(2) × U(1). We will label the gauge group factors U(1),

SU(2) and SU(3) by k = 1, 2, 3 respectively. Then are three complex numbers Bk ≡ B̃k(0)

and three real numbers Ak which determine the gaugino and sfermion soft masses. They

are defined as above, using the current supermultiplet of the respective gauge group. The

soft masses are given to leading order in the α by

Mk = g2
kMBk, m2

f =
3∑

k=1

g4
kc2(f, k)Ak (2.16)

f = Q,U,D, L,E labels the matter representations of the MSSM, and c2(f, k) is the

quadratic Casimir of f with respect to the gauge group k.
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Since the five sfermion masses are determined by three real numbers, they must satisfy

two sum rules. These take the form [15]:

m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0.

(2.17)

From (2.16), it is clear that these sum rules are valid at O(α2). However, we can further

demonstrate that they are valid at O(α3) and to leading-log order for any α, meaning that

the sum rules must be satisfied to very high accuracy.

First, it was already shown in [15] that the sum rules are preserved by the MSSM

RGEs (neglecting contributions from the Higgs sector proportional to the Yukawa interac-

tions). This takes care of the leading-log corrections. Second, we can consider the O(α3)

corrections coming from the hidden sector. These arise from various current three-point

functions in the hidden sector. It is easy to see that gauge invariance allows only five

three-point functions: SU(3)3, SU(2)3, U(1)3, SU(3)2U(1), SU(2)2U(1). If one imposes

messenger parity (which sends VY → −VY ), this eliminates the mixed three-point func-

tions and the U(1)3, leaving us with only the SU(3)3 and SU(2)3 three point functions.

These represent additional contributions to the parameters A2 and A3. Their presence

does not spoil the sum rules, which only rely on the fact that there are three A’s and not

that they only receive contributions at a given order in α.

3. Sensitivity to UV physics

3.1. General remarks

In the previous section, we restricted our analysis to renormalizable, UV-complete

hidden sectors. However, it is often the case that our understanding of the hidden sector is

incomplete, that we have only an effective description of it at low energies. In this section

we would like to make some general comments about the dependence of the MSSM soft-

breaking terms on unknown UV physics. This will have immediate applications in the next

section, when we wish to use incomplete messenger-spurion models of gauge mediation to

cover the parameter space of GGM. With our understanding of the (in)sensitivity of gauge

mediation to UV physics, we will be sure that the models we study in the next section are

indeed calculating correctly the MSSM soft masses.

We will begin with a more abstract discussion of UV sensitivity in a theory with

spontaneously broken SUSY. Then in the next subsection we will give an example to
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illustrate some of our general comments. The reader may find it useful to reread the general

discussion after having gone through the example calculation in the next subsection.

Consider a hidden sector consisting of an effective field theory valid below a UV cutoff

scale Λ (which could be e.g. the Planck scale, or some UV scale), with SUSY spontaneously

broken at a scale
√
F . As long as

√
F ≪ Λ, all the soft terms are calculable in terms of

the effective theory. The reason is that at energies much larger than
√
F supersymmetry

is restored and all the supersymmetry breaking contributions arise at energies of order
√
F

or smaller.

Now suppose the hidden sector is a messenger model of gauge mediation. Such models

are weakly coupled truncations of a more complete theory valid above the scale Λ. They

are fully specified by the set of messenger quantum numbers and the set of messenger

masses given in (1.2), (1.3), (1.4). In this scheme, the soft parameters are calculable in

terms of the messenger mass matrices. Let us denote the scale of the messenger sector by

M . Clearly, when we study these models, we are implicitly taking the limit Λ → ∞ with

M fixed.

Typically one considers the messenger scale M and the SUSY-breaking scale
√
F to

be of the same order. In this case there is no problem and the soft terms are indeed

unambiguously calculable, insensitive to the physics above the UV cutoff Λ. However, it

is often the case that the messengers at the scale M receive supersymmetry breaking mass

splittings which are much smaller than F
M . Then, we might want to reconsider the Λ → ∞

limit in such a way that the messenger mass splittings are kept finite.

For example, imagine that these mass splittings are or order F
Λ

. Then, the proper

decoupling limit is Λ,
√
F → ∞ with fixed F

Λ
and M . In this case the soft-breaking

terms may not be calculable. A simple way to see that is to add to the theory additional

messengers with mass of order Λ and supersymmetry breaking mass splittings of order
F
Λ . These messengers contribute to gaugino masses and sfermion mass-squareds additional

terms of order F
Λ

and (F
Λ

)2 respectively. We can view these additional contributions as

finite local counterterms for gaugino masses and sfermion masses which are determined by

the details of the high energy theory.

From the point of view of the effective theory, such counterterms are ambiguous,

controlled by the choice of UV completion above the scale Λ. It is important to note,

however, that any such ambiguity must necessarily arise only at leading order in the SUSY

breaking parameter F , since higher-order contributions from the UV states are necessarily

suppressed by additional powers of F
Λ2 (which goes to zero as Λ → ∞).
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The sensitivity to the UV is particularly dramatic when the supertrace of the mes-

senger spectrum is nonzero [24,28]. In this case the necessary counterterms include a

logarithmically divergent sfermion mass. (See Appendix B for an explicit proof of this

fact.) We stress that this divergence is a symptom of the problem, but the problem might

arise even if the supertrace vanishes.

We conclude by roughly summarizing the foregoing discussion: if the messenger split-

tings are parametrically smaller than F/M , the soft-breaking terms in the MSSM are not

calculable without further UV input.

3.2. Example

Let us now illustrate these general points with a simple example. To that end, consider

the messenger theory with superpotential

Weff = Mφ1φ̃1 (3.1)

and Kähler potential

Keff = |X |2 + |φ̃1|2 +
(
1 +

∣∣∣
X

Λ

∣∣∣
2

+ ...
)
|φ1|2 (3.2)

where the ellipsis contains higher dimensional operators and X is a SUSY breaking field

with

〈X〉 = M ′ + θ2F (3.3)

It will be convenient to introduce the following notation:

x ≡ M ′

Λ
, y =

F

MΛ
(3.4)

As described above, we consider the limit Λ → ∞ with x and y and the low energy mass

parameter M held fixed.

By the general arguments above, we expect that the soft parameters computed in

this effective theory are sensitive to large corrections from states at the scale Λ where the

description of the physics given by (3.1) and (3.2) breaks down. Moreover, we expect that

such corrections only enter in at leading order in the SUSY-breaking parameter F . We

will now explicitly show that this is indeed the case.
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Using our messenger GGM formalism developed in Appendix B, or equivalently in

this case using the explicit formulas from [24], we find the low energy soft parameters to

be

Beff =
Mx

48π2(1 + x2)2
(
6(1 + x2)y + (2 + x2)y3

)
+ O(y5) (3.5)

and

Aeff =
M2

64π4(1 + x2)2

((
log
(Λ2

cutoff

M2

)
− 2 + x2 + 2 log(1 + x2)

)
y2 +

x2(6 + x2)

36(1 + x2)
y4

)
+O(y6).

(3.6)

Note that while Beff is finite, Aeff is logarithmically divergent with the UV cutoff Λcutoff .

The appearance of this divergence which multiplies the supertrace in the low energy effec-

tive theory

STrM2
IR = − 2M2y2

(1 + x2)2
(3.7)

reminds us that our theory must be UV completed. Note, however, that even though the

gaugino mass parameter is finite, it too will be sensitive to the UV physics as we will see

below.

We can regulate the divergence in (3.6) by embedding the IR theory in a renormalizable

UV theory with the following superpotential

W = Xφ1φ̃2 +Mφ1φ̃1 + Λφ2φ̃2 (3.8)

and a canonical Kähler potential.5 Integrating out the heavy fields (with mass Λ) φ2, φ̃2,

we readily derive the effective low energy Lagrangian (3.1), (3.2).6

The contribution of the messengers in our full theory (3.8) to the soft SUSY breaking

masses in the MSSM is manifestly finite. Let’s compare it to the calculation in the low

energy theory (3.5), (3.6).

Again, using our messenger GGM formulas we find the following soft parameters

Bfull =
Mx

48π2(1 + x2)2
(2 + x2)y3 + O(y5) (3.9)

5 Some authors (see e.g.[24]) regularize the theory using dimensional reduction with “ǫ-scalars.”

We prefer to replace the unphysical ǫ-scalars with physical heavy fields as in (3.8).
6 In this regularization, we see that the negative sign of the supertrace in (3.7) corresponds

precisely to what we expect from the general results on integrating out massive chiral matter in

Appendix A.
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and

Afull =
M2

64π4(1 + x2)2

((
log
( Λ2

M2

)
+ 2x2 + 2 log(1 + x2)

)
y2 +

x2(6 + x2)

36(1 + x2)
y4

)
+ O(y6)

(3.10)

We see that Beff and Bfull differ only at leading order in y, with the counterterm given

by7

δB =
M

8π2

( x

1 + x2

)
y (3.11)

For the particular UV definition we have chosen, we can understand this term as arising

from the rescaling anomaly in the recanonicalization of the IR Kähler potential. Notice,

however, that if we had added messengers to the UV theory that did not couple to the

light messengers, they would have also contributed at order y to the counterterm in (3.11).

These contributions cannot be captured by the rescaling anomaly.

Similarly, the difference between Afull and Aeff is also only at leading order in the

SUSY breaking. However, here it includes an infinite counterterm:

δA =
M2

64π4(1 + x2)2
(log(Λ2/Λ2

cutoff) + x2 + log(1 + x2))y2 . (3.12)

Again, adding messengers in the UV decoupled from the IR has the effect of generating

additional corrections at leading order in the SUSY breaking.

With a sharp set of criteria for defining calculable gauge mediation models in hand,

we will now explore the covering of the GGM parameter space in the next section. In par-

ticular, when using messenger models we will specialize to the case of vanishing supertrace

and F
Λ → 0.

4. Covering the General Gauge Mediation Parameter Space

4.1. The general setup

In this section we will demonstrate, using a general model with messengers, that the

entire parameter space of GGM can be covered by a calculable weakly coupled field theory.

Consider a theory with N chiral messengers Φi, Φ̃i, i = 1, . . . , N transforming in some

vector-like representation R ⊕ R of a gauge group G (which will later be identified with

7 One can check that the full expressions for both B and A in the effective and the full theories

agree at all higher orders in y and not just at the next-to-leading order we have written down in

our expressions above.
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the SM gauge group). The messenger spectrum determines the GGM soft masses, so we

will focus on that. The most general messenger spectrum is of the form

Vmass terms = (ψ̃TMFψ + c.c.) +

(
φ
φ̃∗

)†

M2
B

(
φ
φ̃∗

)
(4.1)

with

M2
B ≡

(
M†

FMF + ξ F

F † MFM†
F + ξ̃

)
(4.2)

Here MF , ξ, ξ̃ and F are all N × N matrices. We take MF to be diagonal with real,

positive entries without loss of generality. ξ and ξ̃ are Hermitian; and F is complex. The

off-diagonal parameters F can arise from “F-term breaking” e.g. from a superpotential

coupling to spurion field. The diagonal parameters ξ can arise from “D-term breaking”

e.g. from FI-U(1) terms. More generally, the general spectrum shown in (4.1) can arise

from complicated non-Abelian dynamics such as in [26].

We will impose the following restrictions on the messenger spectrum, motivated by

phenomenology and overall consistency:

1. In order to avoid the SUSY CP problem, we require all the mass parameters to be

real

ξ = ξ∗, ξ̃ = ξ̃∗, F = F ∗ . (4.3)

2. In order to guarantee that no dangerous FI-term for hypercharge is generated, we

impose invariance under messenger parity [6,23]8

Φi ↔ Φ̃i. (4.4)

This restricts the parameters to satisfy

ξ = ξ̃ , F = FT . (4.5)

3. Since we want our theory to be calculable and insensitive to UV physics, we require

vanishing messenger mass-squared supertrace. This translates to

Tr ξ = 0 (4.6)

8 Actually, the authors of [23] considered another action for this symmetry which maps chi-

ral superfields to anti-chiral superfields. Such a symmetry does not commute with the Lorentz

symmetry. However, if we also impose CP symmetry, our choice is equivalent to theirs.
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4. In the case where G = SU(3) × SU(2) × U(1), we want the gauge couplings to unify.

This restricts the messengers to be in complete SU(5) representations. Furthermore,

we limit the number of representations such that the theory remains perturbative.

5. The messengers must be non-tachyonic for consistency of the model. So this puts

upper limits on the magnitudes of the entries in ξ and F .

Finally, we note that if the messengers are in a reducible representation

R =
⊕

R

(nR ×R) (4.7)

then the messenger mass matrices must be block-diagonal. Each block couples the messen-

gers with the same R. Consequently, all of the statements above hold for each R separately,

and the leading-order in α contributions from each R to the soft masses are additive.

4.2. Covering the GGM parameter space of a toy U(1) visible sector

In this subsection we will consider a simplified theory with only G = U(1) symmetry

and messengers with charges ±1. This example is instructive because the detailed repre-

sentation theory of the messengers does not play an important role in this case. It will

also be useful in the next subsection when we consider the full G = SU(3)×SU(2)×U(1)

case.

Here there is only one A parameter and only one B parameter and covering the

parameter space means finding a theory that covers the range

κ =
A

|B|2 ∈ (0,∞). (4.8)

Notice that κ → 0 corresponds to the limit of either a very massive gaugino or vanishing

sfermion mass, while κ → ∞ corresponds to either a very massive scalar or vanishing

gaugino mass.

Let us first ask if we can cover (4.8) with a single messenger pair and, at the same

time, obey the microscopic constraints on our messenger sector described in the previous

subsection. To answer this question, note that the most general single messenger model

allowed by messenger parity and vanishing supertrace is of the form

MF = M, M2
B =

(
M2 F
F M2

)
. (4.9)
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i.e. only minimal gauge mediation is allowed. This model has two parameters, M and F ,

and spans a two-dimensional subspace of the full A and B parameter space. However, an

explicit calculation shows [29] that this subspace is not the full GGM parameter space and

that in fact

κ ∈ (.37, 1) (4.10)

where the upper bound for κ is obtained in the limit of small SUSY breaking and the lower

bound arises because the messengers cannot be tachyonic.

Next, we try a system with two messengers. Since we are only interested in giving

an existence proof of (4.8), we will not consider the most general possible two-messenger

mass matrix satisfying the conditions above. Instead, we consider the following special

mass matrix

MF =

(
M1 0
0 M2

)
(4.11)

and

M2
B =




M2
1 +D 0 F1 0
0 M2

2 −D 0 F2

F1 0 M2
1 +D 0

0 F2 0 M2
2 −D


 . (4.12)

This model could arise, e.g. from a simple MGM-like setup with the messengers charged

under an additional U(1)′ gauge group with a nonzero FI D-term.

With the added assumption

F1, F2, D ≪M2
1,2 . (4.13)

we can use the techniques of wavefunction renormalization [30,22] to compute the A and

B parameters

B =
1

8π2

( F1

M1
+
F2

M2

)
+ O(F 3, DF ) (4.14)

and
A = AF + Aξ

AF =
1

64π4

( F 2
1

M2
1

+
F 2

2

M2
2

)
+ O(F 4, DF 2)

Aξ =
D

32π4
log(M2

1 /M
2
2 ) + O(DF 2).

(4.15)

From these expressions, it is straightforward to see that this example in fact covers the

range

κ ∈ (−∞,∞). (4.16)
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First, for D = 0 we can set F1

M1

≈ − F2

M2

such that B is very small while A is finite.

This leads to arbitrarily large |κ|. However, setting D = 0 prevents us from making |κ|
arbitrarily small. For that, we use nonzero D to set

Aξ < 0 (4.17)

such that A = AF + Aξ is arbitrarily small with fixed B.

We conclude that this example covers the full parameter space of GGM for a U(1)

visible sector.

4.3. Covering the MSSM GGM parameter space

Let us now generalize the discussion of the previous section to the physically relevant

case of G = SU(3) × SU(2) × U(1). We will see that, when properly analyzed, this case

reduces to the U(1) case considered in the previous subsection.

We would like to find weakly-coupled messenger theories that cover the full GGM

parameter space of the MSSM, namely the six parameters Ak, Bk ∈ R
+, where k = 1, 2, 3

labels U(1), SU(2) and SU(3), respectively. A first analysis of this subject was presented by

Carpenter, Dine, Festuccia and Mason in [16]. We will extend their analysis, by demanding

not only the right number of parameters, but that the entire parameter space can be

covered.

As noted above around equation (4.7), the messenger mass matrices are block diagonal

with respect to different irreps R, and the contribution from messengers of different irreps

are additive. It follows then that

Ak =
∑

R

Nk,RAR , Bk =
∑

R

Nk,RBR (4.18)

where the sum is over the different messenger irreps, and Nk,R are the total Dynkin indices

of the irrep R with respect to the gauge group k. Notice how the dependence on the gauge

group is trivial and factors out completely. The functions AR and BR are universal in the

sense that they depend only on the mass parameters of the messengers with representation

R. In fact, they are identical to what one would compute for nR U(1) messengers with

charges ±1.
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Since we are interested in models that are compatible with unification, we should

consider messengers in complete representations of SU(5). The smallest SU(5) represen-

tations 5 and 10 can be decomposed under the usual matter representations of the MSSM

as

5 = D ⊕ L , 10 = Q⊕ U ⊕ E. (4.19)

So we will restrict our attention to R = Q,U,D, L,E. Just for reference, the Dynkin

indices for these representations are

N1,Q =
1

10
, N1,U =

4

5
, N1,E =

3

5
, N1,D =

1

5
, N1,L =

3

10

N2,Q =
3

2
, N2,L =

1

2

N3,Q = 1, N3,U =
1

2
, N3,D =

1

2

(4.20)

where in the first line we have used the standard GUT normalization for the U(1)Y charge.

The expressions (4.18) immediately lead to a necessary condition on the messenger

content, in order for the model to cover the full parameter space: we need messengers

transforming in at least three different irreps. Otherwise, we do not have three linearly

independent functions AR and three linearly independent functions BR.

This means that any number of messengers in 5⊕5 cannot cover the parameter space

(they have only two values of R = D,L). Next we can attempt to use messengers in a single

copy of 10 ⊕ 10. Here we have three values of R = Q,U,E and therefore three linearly

independent constants. However, the result (4.10) in the U(1) toy example discussion

shows that these constants are bounded, .37 < κR ≡ AR

|BR|2 < 1. In particular, we cannot

make the gauginos arbitrarily heavy compared to the scalars.

As in the U(1) example, we can avoid this difficulty by having at least two copies of

the representations and then using D-type supersymmetry breaking. We are therefore led

to the following simplest possible models

2 × (10 ⊕ 10) or 2 × (5⊕ 5) ⊕ 10 ⊕ 10 . (4.21)

The latter is more “minimal” since it has slightly smaller total Dynkin index (and thus

contributes slightly less to the MSSM gauge coupling beta functions). However, the former

is easier to analyze, since we can now build a theory that is three copies of the two-

messenger models discussed in the previous section, one for each irrep in the 10. The

small SUSY breaking result (4.16) is then enough to show that we can in fact cover the
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parameter range. This is true even if we take universal fermion mass for each 10 ⊕ 10

factor, so we can cover the parameter space without introducing supersymmetric GUT-

breaking splittings in the messenger sector. This shows that covering the parameter space

is compatible with unification, up to possible threshold corrections coming from the SUSY-

splittings.

The analysis of a theory with messenger content 2 × (5 ⊕ 5) ⊕ 10 ⊕ 10 is slightly

different since the 10 ⊕ 10 representations must have pure F-type breaking. In particular,

the Q, U , and E type messengers must satisfy (4.10) and so

0.37 < κR < 1 for R = Q,U,E (4.22)

Substituting (4.22) into (4.18), we find six equations for seven non-compact variables

(A(D), A(L), B(D), B(L), B(Q), B(U), and B(E)) and three compact variables (κQ,U,E).

However, it is not completely obvious that a real solution exists, because the substitution

is quadratic in B(Q), B(U) and B(E). One can check that this is always possible if we

take κQ > κE , κU . Note that this takes us outside the small SUSY-breaking limit (where

κ = 1) for the E and the U messengers.

These results show that there cannot be any additional field theoretic restrictions on

the GGM parameter space. Another consequence of this result is the following. Assume

that all the soft terms are measured someday, and our two sum rules (1.1) are satisfied.

Then, we can derive the six numbers Ak, Bk and try to match them with a more microscopic

theory. Our result here shows that whatever these numbers are, we’ll be able to obtain

them from weakly coupled messengers. In fact, we’ll be able to do it in more than one way.

This implies that the gaugino and sfermion masses alone will not be enough to distinguish

between different gauge mediation scenarios. More input, such as the messenger scale or

the SUSY-breaking scale (equivalently, the gravitino mass), will be needed in order to

break this degeneracy.
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Appendix A. General results on the effective supertrace

In this appendix we analyze the effect of integrating out massive modes at tree-level

in a renormalizable theory. In particular, we will be interested in the supertrace over the

spectrum of the low-energy effective theory. We will assume that the low-energy theory is

described by a non-linear sigma model without gauge interactions. Then the supertrace

over the light modes is given by the following general formula [31,32]:

STrM2 = 2Rckg
kagbcWaW

∗
b

(A.1)

where the indices run over the chiral superfields Φa comprising the low-energy effective

theory; gab is the inverse Kähler metric; Rab is the Ricci tensor associated with the Kähler

metric, and W is the effective superpotential.

We will show that integrating out massive chiral matter results in a negative semi-

definite Ricci tensor, so STrM2 ≤ 0 in this case. We then show that integrating out

massive vector fields results in an indefinite Ricci tensor and correspondingly a supertrace

of indefinite sign.

A.1. Integrating out massive chiral matter

Consider the most general renormalizable theory of heavy chiral superfields HA cou-

pled to light chiral superfields ℓa. This must have the form (we take the Kähler potential

to be canonical)

W =
1

2
λAbcH

Aℓbℓc +
1

2
MABH

AHB +
1

2
mabℓ

aℓb + ... (A.2)

where the ellipsis contains unimportant marginal and higher dimensional couplings, and

m≪M . Integrating out the heavy fields yields the following equation of motion

HA = −1

2
(M−1)ABℓTλBℓ+ ... (A.3)

Substituting this into (A.2) we obtain the effective superpotential

Weff =
1

2
mabℓ

aℓb + O(ℓ4) (A.4)

We also find the following effective Kähler potential

Keff = ℓ†ℓ+
1

4

∑

A

∣∣(M−1)ABℓTλBℓ
∣∣2 ... (A.5)
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It follows that the Ricci tensor of the effective Kähler metric

R
ab

= −∂a(gcdg
db,c

) (A.6)

is at ℓ = 0

Rab = −δcdgab,cd = −
∑

A

(
(M−1λ)A(M−1λ)†A

)

ab
(A.7)

This is a sum over negative semi-definite matrices, so it is also negative semi-definite. It

then follows from (A.1) that the effective supertrace over the light fields is non-positive.

One application of this result is to gauge mediation models of the type discussed in section

3, where the HA fields are heavy messengers and the ℓa are light messengers and SUSY

breaking fields.

A.2. Integrating out massive vector superfields

Next we consider what happens when one classically integrates out massive vector

superfields. Here it turns out that the Ricci tensor of the effective Kähler metric is indefinite

and therefore the supertrace over the light spectrum is also of indefinite sign.

The setup is as in [26]; we will review it here. Consider a gauge theory with matter

chiral superfields Φa transforming under gauge group G (not necessarily simple), where

a = 1, . . . , N denotes the collective set of gauge and flavor indices. Suppose that the Φa

acquire supersymmetric vevs φ0 which Higgs the entire gauge group. These vevs must lie

along the D-flat moduli space M defined by the equations:

φ†0T
Iφ0 = 0 (A.8)

where T I are the generators of G. Now consider the fluctuations around this point in

moduli space:

Φ = φ0 + δΦ (A.9)

We are interested in the effective Kähler potential for these fluctuations induced by inte-

grating out the massive vector supermultiplets of G. In what follows we will work in the

unitary gauge discussed in [26]

φ†0T
IδΦ = 0 (A.10)

which guarantees that the fluctuations lie within M. It will be convenient to perform a

unitary transformation so that δΦa=1,...,N−dimG satisfy (A.10) and the other elements of

δΦ are in the orthogonal subspace.
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Now according to [26], the effective Kähler potential is given by

Keff = δΦ†δΦ − 1

2
(δΦ†T IδΦ)h−1

IJ (δΦ†T JδΦ) + O(δΦ6) (A.11)

where hIJ is the matrix

hIJ =
1

2
Φ†{T I , T J}Φ (A.12)

(Note the analogy with the previous subsection: h−1
IJ is analogous to M−1†M−1 and T I

ba

is analogous to λAbc. The only difference is in the type of the indices, which dictates how

they are contracted.) As in the previous subsection, we can compute the Ricci tensor at

leading order in the fluctuations. However, we must be careful not to differentiate with

respect to all the fluctuations δΦa, but only those which satisfy the gauge condition (A.10).

In our convenient basis, these are simply the a = 1, . . . , N − dimG entries of δΦa. So the

metric is simply

gab = δab − (δΦ†T I)ah
−1
IJ (T JδΦ)b − (T I)bah

−1
IJ (δΦ†T JδΦ) + O(δΦ4) (A.13)

with a, b = 1, . . . , N − dimG. Therefore, the Ricci tensor at δΦ = 0 is:

Rab = −δcdgab,cd = (T I)c
ah

−1
IJ (T J)bc + (T I)bah

−1
IJ Tr ′T J (A.14)

Here the sum is only over indices in the range 1, . . . , N − dimG, and Tr ′ refers to the

restricted trace over the subspace of fluctuations satisfying (A.10). Even though the full

trace of T J must vanish due to the anomaly condition, the restricted trace need not vanish

since the gauge symmetry is spontaneously broken. This is important, because while the

first term in (A.14) enjoys definiteness properties, the second term obviously does not.

Thus there is no reason to expect the Ricci tensor to have any definiteness property.

Indeed, it is straightforward to construct simple examples where Rab has both positive

and negative eigenvalues.9 Therefore we conclude in this case that the effective supertrace

can have either sign.

9 For instance, consider a U(1) gauge theory with fields Φ1,2,3,4 having charges q1 = +1,

q2 = −1, q3 = +q and q4 = −q with q 6= ±1. The D-flat moduli space is characterized by

φ0 = (Φ1, Φ2, Φ3, Φ4) with Φi satisfying the equation

|Φ1|2 − |Φ2|2 + q(|Φ3|2 − |Φ4|2) = 0 (A.15)

Going to a point on this moduli space, we can impose the gauge fixing condition (A.10) by solving

for δΦ4. Substituting back into the Kähler potential (A.11) gives the effective Kähler potential

for δΦ1,2,3. From this one can compute the Ricci tensor at δΦ = 0 using R
ab

= −δcdg
ab,cd

. Then

by varying φ0 and q it is easy to find places where R
ab

has both positive and negative eigenvalues.
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Appendix B. General results on multiple messenger models

In this appendix we write down the GGM correlation functions for a general messenger

theory. We then explicitly show that a messenger sector with non-vanishing supertrace

generates contributions to the scalar mass-squareds that are logarithmically divergent and

proportional to the supertrace.

As in section 4, let us restrict ourselves to the case that the messengers are charged

under a U(1) gauge group with mass terms

V ⊃ ξijφiφ
∗
j + ξ̃ij φ̃iφ̃

∗
j + |Mi|2(φiφ

∗
i + φ̃iφ̃

∗
i )+fijφiφ̃j +f∗

ijφ
∗
i φ̃

∗
j +Miψiψ̃i +M

∗
i ψiψ̃i (B.1)

and i = 1, ..., N . Again, taking the φi and φ̃i to have U(1) charge +1 and −1 respectively,

we find

J(x) = φ∗i φi − φ̃∗i φ̃i

jα(x) = −
√

2i(φ∗iψiα − φ̃∗i ψ̃iα)

jα̇(x) =
√

2i(φiψiα̇ − φ̃iψ̃iα̇)

jµ(x) = i(φi∂µφ
∗
i − φ∗i ∂µφi − φ̃i∂µφ̃

∗
i + φ̃∗i ∂µφ̃i) + ψiσµψi − ψ̃iσµψ̃i

(B.2)

where we have implicitly summed over i.

Let us now write the various current two-point functions. To perform the calculation,

it will be convenient to change basis from the gauge eigenstates appearing in (B.2) to the

mass eigenstates via the following expressions

φi = Ria · ϕa, φ̃∗i = R(i+N)a · ϕa (B.3)

where i = 1, ..., N , a = 1, ..., 2N , and R is a 2N × 2N unitary matrix. Let us also denote

the bosonic (fermionic) mass eigenvalues by µa (Mi). Inserting (B.3) into (B.2), and

performing the contractions to evaluate the correlators, we find

C0(p) =
(
RiaRib −R(j+N)aR(j+N)b

)(
RkbRka −R(l+N)bR(l+N)a

)
I(p, µa, µb)

C1/2(p) =
p2 + µ2

a −M2
i

p2

(
RiaRia +R(i+N)aR(i+N)a

)
I(p, µa,Mi) +

1

p2

(
J(µa) − 2J(Mi)

)

C1(p) =
1

3p2

(
(p2 + 4µ2

a)I(p, µa, µa) + 4(p2 − 2M2
i )I(p,Mi,Mi) + 4J(µa) − 8J(Mi) +

µ2
a − 2M2

i

4π2

)

B = −4MiRiaR(i+N)aI(0,Mi, µa)

(B.4)
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where all indices are summed, and we define

I(p,m1, m2) =

∫
d4q

(2π)4
1

((p+ q)2 +m2
1)(q

2 +m2
2)

=
1

16π2

(
log

Λ2
q

p2
+ 1
)

+
1

16π2p2

(
m2

1 log
m2

1

p2
+m2

2 log
m2

2

p2
−m2

1 −m2
2

)

+ O
( 1

p4
,
log p2

p4

)

J(m) =

∫
d4q

(2π)4
1

q2 +m2
=

Λ2
q

16π2
+

m2

16π2
log

m2

Λ2
q

(B.5)

where Λq is a momentum cutoff for the q integral. Simple consistency checks of the

expressions in (B.4) are the following. As follows from supersymmetry, they all have the

same asymptotic behavior, N
8π2 log Λ2

p2 , at large p. Also, since there are no massless particles

in the loop, they are finite as p→ 0.10

Let us now show that a non-vanishing messenger supertrace necessarily generates a

logarithmically divergent scalar counterterm. Recall first the expression (2.10) for the A

parameter

A ≡ −
∫

d4p

(2π)4
1

p2

(
3C1(p) − 4C1/2(p) + C0(p)

)
(B.6)

Using (B.5), (B.4) and focussing on the O(1/p2) terms (one can check that the O(p0, log p)

terms, and hence the dependence on Λq, always vanish in (B.6)), we find

δA = − 1

64π4

(
Trµ2 − 2TrM2

)
log Λ2 = − 1

128π4
StrM2 · log Λ2 (B.7)

where Λ is the cutoff of the p integral in (B.6).

In this example we took the gauge group to be U(1) and took all the messengers to

have charge ±1. More generally, one obtains a charge-weighted supertrace, or to be precise

δA = − 1

128π4

∑

R

StrNRM2
R · log Λ2 (B.8)

where the supertrace is taken over the subset of messengers transforming in irrep R and

NR is the Dynkin index of irrep R.

10 We thank Thomas Dumitrescu for correcting some errors in the original version of (B.4).
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