81 research outputs found

    A standalone version of IsoFinder for the computational prediction of isochores in genome sequences

    Get PDF
    Isochores are long genome segments relatively homogeneous in G+C. A heuristic algorithm based on entropic segmentation has been developed by our group, and a web server implementing all the required components is available. However, a researcher may want to perform batch processing of many sequences simultaneously in its local machine, instead of analyzing them on one by one basis through the web. To this end, standalone versions are required. We report here the implementation of two standalone programs, able to predict isochores at the sequence level: 1) a command-line version (IsoFinder) for Windows and Linux systems; and 2) a user-friendly version (IsoFinderWin) running under Windows.Comment: 7 pages, 3 figure

    Phylogenetic distribution of large-scale genome patchiness

    Get PDF
    [Background] The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness) has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. [Results] The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris), birds (Gallus gallus), fishes (Danio rerio), invertebrates (Drosophila melanogaster and Caenorhabditis elegans), plants (Arabidopsis thaliana) and yeasts (Saccharomyces cerevisiae). We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. [Conclusion] Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.This work was supported by the Spanish Government (BIO2005-09116-C03-01) and Plan Andaluz de Investigación (CVI-162, P06-FQM-01858, P07-FQM-03163 and TIC-640)

    Mitos tartésicos: Gárgoris y Habis o la cuestión del incesto

    Get PDF
    Pretensión de interpretar el mito tartésico desvinculando el posible incesto que aparece en él de la existencia de un posible matriarcado en el sur peninsular. El argumento del mito, junto a los intereses estatales y políticos que subyacerían bajo él, revelaría la constitución de una filiación extensa bajo la forma de linajes, correlativas a la instauración de alianzas laterales. En este sentido poco importa que el régimen de afiliación sea patrilineal o matrilineal. Lo importante es que, por la prohibición del incesto, la filiación se vuelva extensa, motor de la reproducción social, haciendo que las relaciones entre familias sean coextensivas al campo social.The interpretation of tartesico’s myth is intended disconnecting some possible incest from the existence of some possible matriarchy at south of Iberian Peninsula. The myth can discover both political claims and the growth of lineages. By the way, if the affiliation regime is maternal or paternal is not important at all. The most important is that the affiliation become large because of the prohibition of incest. So, the relationships between familys are extended to the whole society

    Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    Get PDF
    Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands

    CpGcluster: a distance-based algorithm for CpG-island detection

    Get PDF
    BACKGROUND: Despite their involvement in the regulation of gene expression and their importance as genomic markers for promoter prediction, no objective standard exists for defining CpG islands (CGIs), since all current approaches rely on a large parameter space formed by the thresholds of length, CpG fraction and G+C content. RESULTS: Given the higher frequency of CpG dinucleotides at CGIs, as compared to bulk DNA, the distance distributions between neighboring CpGs should differ for bulk and island CpGs. A new algorithm (CpGcluster) is presented, based on the physical distance between neighboring CpGs on the chromosome and able to predict directly clusters of CpGs, while not depending on the subjective criteria mentioned above. By assigning a p-value to each of these clusters, the most statistically significant ones can be predicted as CGIs. CpGcluster was benchmarked against five other CGI finders by using a test sequence set assembled from an experimental CGI library. CpGcluster reached the highest overall accuracy values, while showing the lowest rate of false-positive predictions. Since a minimum-length threshold is not required, CpGcluster can find short but fully functional CGIs usually missed by other algorithms. The CGIs predicted by CpGcluster present the lowest degree of overlap with Alu retrotransposons and, simultaneously, the highest overlap with vertebrate Phylogenetic Conserved Elements (PhastCons). CpGcluster's CGIs overlapping with the Transcription Start Site (TSS) show the highest statistical significance, as compared to the islands in other genome locations, thus qualifying CpGcluster as a valuable tool in discriminating functional CGIs from the remaining islands in the bulk genome. CONCLUSION: CpGcluster uses only integer arithmetic, thus being a fast and computationally efficient algorithm able to predict statistically significant clusters of CpG dinucleotides. Another outstanding feature is that all predicted CGIs start and end with a CpG dinucleotide, which should be appropriate for a genomic feature whose functionality is based precisely on CpG dinucleotides. The only search parameter in CpGcluster is the distance between two consecutive CpGs, in contrast to previous algorithms. Therefore, none of the main statistical properties of CpG islands (neither G+C content, CpG fraction nor length threshold) are needed as search parameters, which may lead to the high specificity and low overlap with spurious Alu elements observed for CpGcluster predictions

    Isochores Merit the Prefix 'Iso'

    Full text link
    The isochore concept in human genome sequence was challenged in an analysis by the International Human Genome Sequencing Consortium (IHGSC). We argue here that a statement in IGHSC analysis concerning the existence of isochore is incorrect, because it had applied an inappropriate statistical test. To test the existence of isochores should be equivalent to a test of homogeneity of windowed GC%. The statistical test applied in the IHGSC's analysis, the binomial test, is however a test of a sequence being random on the base level. For testing the existence of isochore, or homogeneity in GC%, we propose to use another statistical test: the analysis of variance (ANOVA). It can be shown that DNA sequences that are rejected by binomial test may not be rejected by the ANOVA test.Comment: 14 pages (including 1 figure), submitte
    corecore