69 research outputs found

    Impacto de la integración de medios mixtos en las Brigadas Ligeras

    Get PDF
    Este Trabajo Fin de Grado, analiza la evolución de las estructuras orgánicas que van a sufrir las Brigadas Ligeras hasta convertirse en Brigadas Orgánicas Polivalentes de Ruedas, junto al actor principal del que depende la integración de medios mixtos, que le dará apoyo de fuegos en las distintas campañas y operaciones a las que se enfrentarán previsiblemente con mayor asiduidad. Para ello, se detallarán los principales objetivos que promueven estas modificaciones y las características de las nuevas Brigadas Orgánicas Polivalentes. Además, se estudiarán las diferencias entre la situación actual y la situación final para identificar cuáles son las variables que afectan en mayor medida a la integración de medios mixtos en una Brigada Ligera. Finalmente, teniendo en cuenta el efecto que la integración va a tener sobre el mantenimiento, la logística, el personal, los materiales, las infraestructuras, la doctrina (tanto en la táctica como en la técnica y los procedimientos), los sistemas de mando y control, la capacidad de proyección, la capacidad de intervención y las cuestiones económicas, se han desarrollado una serie de propuestas para algunas de estas áreas que permitirán adaptar las estructuras actuales a la nueva situación.<br /

    Challenges for future food systems: from the Green Revolution to food supply chains with a special focus on sustainability

    Get PDF
    Finding a food system to feed the growing worldwide population remains a challenge, especially in the current era, where natural resources are being dramatically depleted. From a historical point of view, the Green Revolution, together with biofortification and sustainable intensification, was established as a possible solution to counter hunger and malnutrition during the second half of the 20th century. As a solution, to overcome the limitations attributed to the Green Revolution, food supply chains were developed. The current food system, based on the long food supply chain (LFSC), is characterized by globalization, promoting several advantages for both producers and consumers. However, LFSC has been demonstrated to be unable to feed the global population and, furthermore, it generates negative ecological, environmental, logistical, and nutritional pressures. Thus, novel efficient food systems are required to respond to current environmental and consumers' demands, as is the case of short food supply chain (SFSC). As a recently emerging food system, the evaluation of SFSC sustainability in terms of environmental, economic, and social assessment is yet to be determined. This review is focused on the evolution of food supply systems, starting from the Green Revolution to food supply chains, providing a significant perspective on sustainability.The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M. A. Prieto (RYC-2017-22891), the Juan de la Cierva Incorporación for Hui Cao (IJC2020-04605- 5-I) and the FPU grant for A. Soria-Lopez (FPU2020/06140); by Xunta de Galicia for supporting the program (EXCELENCIA-ED431F 2020/12) and by supporting the postdoctoral grant of M. Fraga- Corral (ED481B-2019-096) and the predoctoral grants of M. Carpena (ED481A 2021/313) and of P. Garcia-Oliveira (ED481A-2019/295); and by the European Union through the “NextGenerationEU” program supporting the “Margarita Salas” grant awarded to P. Garcia-Perez. The authors are grateful to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003), to the Bio Based Industries Joint Undertaking (JU) under grant agreement No. 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) that supports the work of P. Otero and P. Garcia-Perez. The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security, has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (No. 696295)

    Secondary aroma: influence of wine microorganisms in their aroma profile

    Get PDF
    Aroma profile is one of the main features for the acceptance of wine. Yeasts and bacteria are the responsible organisms to carry out both, alcoholic and malolactic fermentation. Alcoholic fermentation is in turn, responsible for transforming grape juice into wine and providing secondary aromas. Secondary aroma can be influenced by different factors; however, the influence of the microorganisms is one of the main agents affecting final wine aroma profile. Saccharomyces cerevisiae has historically been the most used yeast for winemaking process for its specific characteristics: high fermentative metabolism and kinetics, low acetic acid production, resistance to high levels of sugar, ethanol, sulfur dioxide and also, the production of pleasant aromatic compounds. Nevertheless, in the last years, the use of non-saccharomyces yeasts has been progressively growing according to their capacity to enhance aroma complexity and interact with S. cerevisiae, especially in mixed cultures. Hence, this review article is aimed at associating the main secondary aroma compounds present in wine with the microorganisms involved in the spontaneous and guided fermentations, as well as an approach to the strain variability of species, the genetic modifications that can occur and their relevance to wine aroma construction.The research leading to these results was supported by FEDER under the program Interreg V-A Spain-Portugal (POPTEC) 2014–2020 ref. 0377_IBERPHENOL_6_E and ref. 0181_NANOEATERS_ 01_E; by Xunta de Galicia supporting with the Axudas Conecta Peme the IN852A 2018/58 NeuroFood Project and the program EXCELENCIA-ED431F 2020/12; by EcoChestnut Project (Erasmus+ KA202) that supports the work of M. Carpena; by Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003) and by the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019), the JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The research leading to these results was supported by MICINN with the Ramón&Cajal grant for M. A. Prieto (RYC-2017-22891) and the Juan de la Cierva_incorporación grant for P. Otero (IJCI-2016-27774); by Xunta de Galicia and University of Vigo supporting the postdoctoral grant of M. Fraga-Corral (ED481B-2019/096) and the pre-doctoral grant for P. García-Oliveira (ED481A-2019/295).info:eu-repo/semantics/publishedVersio

    Life cycle costs and impacts of massive slabs with varying concrete cover

    Get PDF
    Considering construction costs, predicted service life, and related environmental impacts, this paper evaluates the influence of varied concrete cover thicknesses in the life cycle of a reinforced concrete structure. Environmental impacts and costs of a structural element (slab) are evaluated using Life Cycle Assessment (LCA) and Life Cycle Costs (LCC) varying the concrete cover thickness. Larger covers increase material consumption (16.27% of steel reinforcement), initial costs (up to 2.44%), and environmental impacts (from 6.46% to 12.51%). However, the enlarged structure service life (durability) provides lower yearly costs (reduction of 74.39%) and environmental impacts (up to 73.15% for ODP). The results highlight that an increase in concrete cover thickness enhances the structure’s durability, reduces costs and environmental impacts per year of predicted service life, contributing to reach more sustainable structures

    State-of-the-art of analytical techniques to determine food fraud in olive oils

    Get PDF
    The benefits of the food industry compared to other sectors are much lower, which is why producers are tempted to commit fraud. Although it is a bad practice committed with a wide variety of foods, it is worth noting the case of olive oil because it is a product of great value and with a high percentage of fraud. It is for all these reasons that the authenticity of olive oil has become a major problem for producers, consumers, and legislators. To avoid such fraud, it is necessary to develop analytical techniques to detect them. In this review, we performed a complete analysis about the available instrumentation used in olive fraud which comprised spectroscopic and spectrometric methodology and analyte separation techniques such as liquid chromatography and gas chroma-tography. Additionally, other methodology including protein-based biomolecular techniques and analytical approaches like metabolomic, hhyperspectral imaging and chemometrics are discussed.The research leading to these results was supported by MICINN with the Ramón&Cajal grant for M. A. Prieto (RYC-2017-22891); by Xunta de Galicia and University of Vigo supporting the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096) and the pre-doctoral grants for A. G. Pereira (ED481A-2019/0228) and P. García-Oliveira (ED481A-2019/295) and by University of Vigo supporting the predoctoral grant for M. Carpena (Uvigo-00VI 131H 6410211).info:eu-repo/semantics/publishedVersio

    The use of invasive algae species as a source of secondary metabolites and biological activities: Spain as case-study

    Get PDF
    In the recent decades, algae have proven to be a source of different bioactive compounds with biological activities, which has increased the potential application of these organisms in food, cosmetic, pharmaceutical, animal feed, and other industrial sectors. On the other hand, there is a growing interest in developing effective strategies for control and/or eradication of invasive algae since they have a negative impact on marine ecosystems and in the economy of the affected zones. However, the application of control measures is usually time and resource-consuming and not profitable. Considering this context, the valorization of invasive algae species as a source of bioactive compounds for industrial applications could be a suitable strategy to reduce their population, obtaining both environmental and economic benefits. To carry out this practice, it is necessary to evaluate the chemical and the nutritional composition of the algae as well as the most efficient methods of extracting the compounds of interest. In the case of northwest Spain, five algae species are considered invasive: Asparagopsis armata, Codium fragile, Gracilaria vermiculophylla, Sargassum muticum, and Grateulopia turuturu. This review presents a brief description of their main bioactive compounds, biological activities, and extraction systems employed for their recovery. In addition, evidence of their beneficial properties and the possibility of use them as supplement in diets of aquaculture animals was collected to illustrate one of their possible applications.The research leading to these results was funded by Xunta de Galicia supporting the Axudas Conecta Peme, the IN852A 2018/58 NeuroFood Project, and the program EXCELENCIAED431F 2020/12; to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003) and to the Bio Based Industries Joint Undertaking (JU) under grant agreement Nº 888003 UP4HEALTH Project (H2020-BBI-JTI-2019). The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS, and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (nº 696295). The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891); by Xunta de Galicia for supporting the postdoctoral grant of M. Fraga-Corral (ED481B-2019/096), the pre-doctoral grants of P. García-Oliveira (ED481A-2019/295) and Antía González Pereira (ED481A-2019/0228); by University of Vigo for the predoctoral grant of M. Carpena (Uvigo-00VI 131H 6410211) and by UP4HEALTH Project that supports the work of C. Lourenço-Lopes.info:eu-repo/semantics/publishedVersio

    Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations

    Get PDF
    The food industry constantly searches for natural derived bioactive molecules with preventive and therapeutic effects using innovative and sustainable strategies. Fig production and processing generate a considerable amount of by-products (leaves, pulp, peels, seeds, and latex) with limited commercial exploitation and negative impact on the environment. These by-products are important sources of high value-added in- gredients, including anthocyanins and pectins that can be of particular interest to the food industry as functional colourants, emulsifiers, and additives. Scope and approach: This review curates recent advances in the valorisation of fig by-products as valuable sources of bioactive molecules for functional food development. Special attention was given to widely used extraction processes, main bioactive compounds, relevant biological properties, and the application of recovered bioactives for functional food development. Key findings and conclusions: Fig by-products are essential sources of structurally diverse bioactive molecules with unique antidiabetic, anti-inflammatory, anti-tumour, immunomodulatory and cardioprotective properties. Owing to these health-promoting potentials, an integral valorisation approach involving sustainable technologies to recover these high value-added ingredients and its utilisation in novel food formulation development should be further stimulated.Funding for open access charge: Universidade de Vigo/CISUG. Au- thors are grateful to Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to the CIMO (UIDB/00690/2020). L. Barros, thank the national funding by FCT, P.I., through the institutional scientific employment program for her contract. This work is also supported by MICINN supporting the Ramo ́n y Cajal grant for M.A. Prieto (RYC-2017-22891) and Juan de la Cierva Formacio ́nn contract for T. Oludemi (FJC2019-042549-I) and by Xunta de Galicia for supporting the program EXCELENCIA-ED431F 2020/12 and the pre-doctoral grant of M. Carpena (ED481A 2021/ 313). Manuel Ayuso thanks to PRIMA and FEDER-Interreg Espan ̃a- Portugal programme for financial support through the projects Local- NutLeg (Section 1 2020 Agrofood Value Chain topic 1.3.1). This work is also supported by the project SYSTEMIC Knowledge hub on Nutrition and Food Security, which received funding from national research funding entities in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (n◦ 696295). Authors are grateful to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003), to the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) The JU receives support from the Euro- pean Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. This work has also received financial support from Portuguese national funds (Fundação para a Ciência e Tecnologia e Ministério da Ciência, Tecnologia e Ensino Superior, FCT/ MCTES) through project UIDB/50006/2020 and AgriFood XXI I&D&I project (NORTE-01-0145-FEDER-000041) cofinanced by European Regional Development Fund (ERDF), through the NORTE 2020 (Programa Operacional Regional do Norte 2014/2020).info:eu-repo/semantics/publishedVersio
    corecore