4 research outputs found

    Progestin-releasing intrauterine device insertion plus palliative radiotherapy in frail, elderly uterine cancer patients unfit for radical treatment

    No full text
    The present study investigated the combination of levonorgestrel-releasing intrauterine device (LNG-IUD) insertion and palliative radiotherapy (RT) as a potential approach for treating frail, elderly endometrial cancer (EC) patients considered unfit for curative oncological treatments. The inclusion criteria were an age of 6565 years, pathological confirmation of a uterine neoplasm, a Charlson comorbidity index (CCI) value of 654 and the presence of vaginal bleeding. Patients underwent intrauterine insertion of an LNG-IUD, and thereafter, received a total dose of 30 Gy at 3 Gy per fraction, over 10 days. The clinical target volume (CTV) was defined as the uterus and disease-involved tissues in the pelvis plus a 1-cm margin. The planning target volume was obtained by adding a 1-cm isotropic margin to the CTV. A total of 9 patients with EC (median age, 85 years; Eastern Cooperative Oncology Group performance status 652, 6588.8%; obesity, 55.5%; median CCI, 5) received an LNG-IUD plus RT. An early complete resolution of bleeding was documented in 8 patients (88.8%), while the remaining patient experienced a marked improvement. The median duration of bleeding control was 18 months, while the 2-year actuarial rate of bleeding-free survival was 53.3% (median follow-up time, 20 months; range, 9-60 months). No LNG-IUD- or severe RT-related complications were documented. Overall, a high rate of bleeding remission, durable bleeding-free survival in face of the easy intrauterine insertion of an LNG-IUD and a negligible toxicity profile of the complete treatment were documented in this study, indicating a requirement for further investigation in a larger series

    Styles and rates of deformation in the frontal accretionary wedge of the Calabrian Arc (Ionian Sea): controls exerted by the structure of the lower African plate

    Get PDF
    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. We analysed the structural style of the frontal accretionary wedge through a multiscale geophysical approach. Pre-stack depth-migrated crustal-scale seismic profiles unravelled the overall geometry of the subduction complex; high-resolution multi-channel seismic and sub-bottom CHIRP profiles, together with morpho-structural maps, integrated deep data and constrained the fine structure of the frontal accretionary wedge, as well as deformation processes along the outer deformation front. We identified four main morpho-structural domains in the western lobe of the frontal wedge: the proto-deformation area at the transition with the abyssal plain; two regions of gentle and tight folding; a hummocky morphology domain with deep depressions and intervening structural highs; a highstanding plateau at the landward limit of the salt-bearing accretionary wedge, where the detachment cuts through deeper levels down to the basement. Variation of structural style and seafloor morphology in these domains are related to a progressively more intense deformation towards the inner wedge, while abrupt changes are linked to inherited structures in the lower African plate. Our data suggest focusing of intense shallow deformation in correspondence of deeply rooted faults and basement highs of the incoming plate. Back-arc extension in the Southern Tyrrhenian Sea has recently ceased, producing a slowdown of slab rollback and plate-boundary re-organization along trans-tensional lithospheric faults segmenting the continental margin. In this complex setting, it is not clear if the accretionary wedge is still growing through frontal accretion. Our data suggest that shortening is still active at the toe of the wedge, and uplift rates along single folds are in the range of 0.25-1.5 mm/yr. An unconformity within the Plio-Quaternary sediments suggests a discontinuity in sedimentation and tectonic processes, i.e. a slowdown of shortening rate or an increase in sedimentation rate, but not a real inactivation of frontal accretion, which still contribute
    corecore