6,995 research outputs found

    New Representations of the Perturbative S-Matrix

    Full text link
    We propose a new framework to represent the perturbative S-matrix which is well-defined for all quantum field theories of massless particles, constructed from tree-level amplitudes and integrable term-by-term. This representation is derived from the Feynman expansion through a series of partial fraction identities, discarding terms that vanish upon integration. Loop integrands are expressed in terms of "Q-cuts" that involve both off-shell and on-shell loop-momenta, defined with a precise contour prescription that can be evaluated by ordinary methods. This framework implies recent results found in the scattering equation formalism at one-loop, and it has a natural extension to all orders---even non-planar theories without well-defined forward limits or good ultraviolet behavior.Comment: 4+1 pages, 4 figure

    On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering

    Get PDF
    We analyse the exponential stability properties of a class of measure-valued equations arising in nonlinear multi-target filtering problems. We also prove the uniform convergence properties w.r.t. the time parameter of a rather general class of stochastic filtering algorithms, including sequential Monte Carlo type models and mean eld particle interpretation models. We illustrate these results in the context of the Bernoulli and the Probability Hypothesis Density filter, yielding what seems to be the first results of this kind in this subject

    Squeezed light at sideband frequencies below 100 kHz from a single OPA

    Full text link
    Quantum noise of the electromagnetic field is one of the limiting noise sources in interferometric gravitational wave detectors. Shifting the spectrum of squeezed vacuum states downwards into the acoustic band of gravitational wave detectors is therefore of challenging demand to quantum optics experiments. We demonstrate a system that produces nonclassical continuous variable states of light that are squeezed at sideband frequencies below 100 kHz. A single optical parametric amplifier (OPA) is used in an optical noise cancellation scheme providing squeezed vacuum states with coherent bright phase modulation sidebands at higher frequencies. The system has been stably locked for half an hour limited by thermal stability of our laboratory.Comment: 3 pages, 3 figure

    Charge density wave and quantum fluctuations in a molecular crystal

    Get PDF
    We consider an electron-phonon system in two and three dimensions on square, hexagonal and cubic lattices. The model is a modification of the standard Holstein model where the optical branch is appropriately curved in order to have a reflection positive Hamiltonian. Using infrared bounds together with a recent result on the coexistence of long-range order for electron and phonon fields, we prove that, at sufficiently low temperatures and sufficiently strong electron-phonon coupling, there is a Peierls instability towards a period two charge-density wave at half-filling. Our results take into account the quantum fluctuations of the elastic field in a rigorous way and are therefore independent of any adiabatic approximation. The strong coupling and low temperature regime found here is independent of the strength of the quantum fluctuations of the elastic field.Comment: 15 pages, 1 figur

    Model and parameter dependence of heavy quark energy loss in a hot and dense medium

    Full text link
    Within the framework of the Langevin equation, we study the energy loss of heavy quark due to quasi-elastic multiple scatterings in a quark-gluon plasma created by relativistic heavy-ion collisions. We investigate how the initial configuration of the quark-gluon plasma as well as its properties affect the final state spectra and elliptic flow of D meson and non-photonic electron. We find that both the geometric anisotropy of the initial quark-gluon plasma and the flow profiles of the hydrodynamic medium play important roles in the heavy quark energy loss process and the development of elliptic flow. The relative contribution from charm and bottom quarks is found to affect the transverse momentum dependence of the quenching and flow patterns of heavy flavor decay electron; such influence depends on the interaction strength between heavy quark and the medium.Comment: 16 pages, 7 figure

    Varicella vaccination in pediatric oncology patients without interruption of chemotherapy

    Get PDF
    AbstractBackgroundMorbidity and mortality from primary varicella-zoster virus (VZV) infection is increased in immunocompromised children. Vaccination of VZV-seronegative cancer patients with live-attenuated varicella vaccine is safe when chemotherapy is interrupted. However, VZV vaccination without interruption of chemotherapy would be preferable.ObjectiveTo vaccinate VZV-seronegative pediatric oncology patients with live-attenuated VZV vaccine without interrupting their chemotherapy.Study-designWe performed a single-center prospective cohort study.ResultsThirty-one patients with either a hematological malignancy (n=24) or a solid tumor (n=7) were vaccinated early during their course of chemotherapy. VZV IgG seroconversion occurred in 14 of the 31 patients (45%) after one vaccination. Only 20 patients were revaccinated after 3 months. These were patients who did not seroconvert (5 patients) and patients who serocoverted (15 patients) to induce or sustain seropositivity. Of these 20 patients the final seroconversion rate was 70%. Seven out of the 31 patients (23%) developed a mild rash of which 5 were treated with antivirals and recovered completely without interrupting chemotherapy, and 2 recovered untreated. Of these 31 immunized patients 26 were available for cellular testing. After one vaccination 20 of 26 patients (77%) tested positive for VZV-specific CD4+ T cells, of which 7 patients had remained VZV-seronegative. After the second vaccination 11 of 11 patients showed VZV-specific CD4+ T cells to sustain positivity, although 4 remained VZV-seronegative.ConclusionsThis study indicates that live-attenuated VZV vaccine can be safely administered to closely monitored pediatric oncology patients without interruption of chemotherapy and adaptive immunity was induced despite incomplete seroconversion

    Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory

    Full text link
    Using high-quality gas phase electron scattering calculations and multiple scattering theory, we attempt to gain insights on the radiation damage to DNA induced by secondary low-energy electrons in the condensed phase, and to bridge the existing gap with the gas phase theory and experiments. The origin of different resonant features (arising from single molecules or diffraction) is discussed and the calculations are compared to existing experiments in thin films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy

    Superconformal symmetry and two-loop amplitudes in planar N=4 super Yang-Mills

    Full text link
    Scattering amplitudes in superconformal field theories do not enjoy this symmetry, because the definition of asymptotic states involve a notion of infinity. Concentrating on planar N=4\mathcal{N}=4 Yang-Mills, we consider a generalization of scattering amplitudes which depends on twice as many Grassmann variables. We conjecture that it restores at least half of the superconformal symmetries, and all of the dual superconformal symmetries. The object arises naturally as the dual of a null polygonal Wilson loop in an (x,θ,θˉ)(x,\theta,\bar\theta) superspace. We support the conjecture by using it to obtain the total differential of all nn-point two-loop MHV amplitudes, and showing that the result passes consistency checks. Potential all-loop constraints are also discussed.Comment: 25 pages, 2 figures and 1 noteboo

    Massive amplitudes on the Coulomb branch of N=4 SYM

    Full text link
    We initiate a systematic study of amplitudes with massive external particles on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that (multi-)soft-scalar limits of massless amplitudes at the origin of moduli space can be used to determine Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numerous examples. 2) We find compact explicit expressions for several towers of tree-level amplitudes, including scattering of two massive W-bosons with any number of positive helicity gluons, valid for all values of the mass. 3) We present the general structure of superamplitudes on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely determined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band and for other simple sectors of the theory. 4) Dual conformal generators are constructed, and we explore the dual conformal properties of the simplest massive amplitudes. Our compact expressions for amplitudes and superamplitudes should be of both theoretical and phenomenological interest; in particular the tree-level results carry over to truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur
    • …
    corecore