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Sur la stabilité et l’approximation de flots de distribution de

processus de branchements, avec applications au filtrage non

linéaire multicibles

Résumé : Nous analysons les propriétés de stabilité exponentielle d’une classe d’équations
à valeurs mesures que l’on rencontre dans des problèmes de filtrage non-linéaire multicibles.
Nous démontrons ensuite les propriétés de convergence uniforme, par rapport à l’horizon
temporel considéré, d’une famille assez générale d’algorithmes de filtrage multicibles. Cette
analyse s’applique notamment aux méthodes de type Monte Carlo séquentielles et aux algo-
rithmes particulaires fondés sur l’évolution de systèmes de particules en interaction de type
champ moyen. Nous illustrons ces résultats dans le cadre des filtres de Bernoulli et les filtres
PHD (Probability Hypothesis Density). Ces résultats semblent être les premiers de ce type
pour ces classes de modèles de filtrage stochastique multicibles.

Mots-clés : Processus à valeurs mesures, filtrage non-linéaire multicibles, filtre de Bernoulli,
filtre PHD (Probability hypothesis density), filtres particulaires, systèmes de particules en
interaction, techniques de champ moyen, propriétés de concentration exponentielle, inégalités
de contraction fonctionnelles.
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1 Introduction

Let (En)n≥0 be a sequence of measurable spaces equipped with the σ-fields (En)n≥0, and for
each with n ≥ 0, denote M(En), M+(En) and P(En) the set of all finite signed measures,
the subset of positive measures and the subset of probability measures, respectively, over the
space En. The aim of this work is to present a stochastic interacting particle interpretation
for numerical solutions of the general measure-valued dynamical systems γn ∈ M+(En)
defined by the following non-linear equation

γn(dxn) =
(
γn−1Qn,γn−1

)
(dxn) :=

∫

En−1

γn−1(dxn−1)Qn,γn−1(xn−1, dxn) (1.1)

with initial measure γ0 ∈ M+(E0), and positive and bounded integral operators Qn,γ from
En−1 into En, indexed by the time parameter n ≥ 1 and the set of measures γ ∈ M+(En).

This class of measure-valued equations arises in a natural way in the analysis of the first
moments evolution of nonlinear branching processes, as well as in signal processing and more
particularly in multiple targets tracking models. A pair of filtering models is discussed in
some details in section 1.1.1 and in section 1.1.2. In the context of multiple targets tracking
problems these measure-valued equations represents the first-order statistical moments of
the conditional distributions of the target occupation measures given observation random
measures obscured by clutter, detection uncertainty and data association uncertainty.

As in most of the filtering problems encountered in practice, the initial distribution of
the targets is usually unknown. It is therefore essential to check wether or not the filtering
equation ”forgets” any erroneous initial distribution. For a thorough discussion on the
stability properties of traditional nonlinear filtering problems with a detailed overview of
theoretical developments on this subject, we refer to the book [5] and to the more recent
article by M. L. Kleptsyna and A. Y. Veretennikov [12]. Besides the fact that significant
progress has been made in the recent years in the rigorous derivation of multiple target
tracking nonlinear equations (see for instance [4, 14, 24, 19]), up to our knowledge the
stability and the robustness properties of these measure-valued models have never been
addressed so far in the literature on the subject. One aim of this paper is to study one such
important property: the exponential stability properties of multiple target filtering models.
We present an original and general perturbation type technique combining the continuity
property and the stability analysis of nonlinear semigroups of the form (1.1). A more
thorough presentation of these results is provided in section 1.2 dedicated to the statement
of the main results of the present article. The detailed presentation of this perturbation
technique can be found in section 3.

On the other hand, while the integral equation (1.1) appears to be simple at first glance,
numerical solutions are computationally intensive, often requiring integrations in high di-
mensional spaces. One natural way to solve the non-linear integral equation (1.1) is to use
find a judicious probabilistic interpretation of the normalized distributions flow given below

ηn(dxn) := γn(dxn)/γn(1)

To describe with some conciseness these stochastic models, it is important to observe that
the pair process (γn(1), ηn) ∈ (R+ ×P(En)) satisfies an evolution equation of the following
form

(γn(1), ηn) = Γn(γn−1(1), ηn−1) (1.2)

RR n° 7376
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Let the mappings Γ1
n : R+ × P(En) → R+ and Γ2

n : R+ × P(En) → P(En), denote the first
and the second components of Γn respectively. By construction, we notice that the total
mass process can be computed using the recursive formula

γn+1(1) = γn(Gn,γn) = ηn(Gn,γn) γn(1) with Gn,γn := Qn+1,γn(1) (1.3)

Suppose that we are given an approximation
(
γNn (1), ηNn

)
of the pair (γn(1), ηn) at some

time horizon n, where N stands for some precision parameter; that is
(
γNn (1), ηNn

)
converges

(in some sense) to (γn(1), ηn), as N → ∞. Then, the N -approximation of the measure γn is
given by γNn = γNn (1)× ηNn . The central idea behind any approximation model is to ensure
that the total mass process at time (n + 1) defined by

γNn+1(1) = ηNn (Gn,γN
n
) γNn (1) (1.4)

can be ”easily” computed in terms of the N -approximation measures γNn . Assuming that the
initial mass γ0(1) = γN0 (1) is known, the next step is to find some strategy to approximate
the quantities Γ2

n+1(γ
N
n (1), ηNn ) by some N -approximation measures ηNn+1, and to set γNn+1 =

γNn+1(1)× ηNn+1.
The local fluctuations of ηNn around the measures Γ2

n(γ
N
n−1(1), η

N
n−1) is defined in terms

of a collection of random fields WN
n :

WN
n :=

√
N
[
ηNn − Γ2

n(γ
N
n−1(1), η

N
n−1)

]
⇐⇒ ηNn = Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N

WN
n (1.5)

which satisfies for any r ≥ 1 and any test function f with uniform norm ‖f‖ ≤ 1,

E
(
WN

n (f) | FN
n−1

)
= 0 and E

(∣∣WN
n (f)

∣∣r | FN
n−1

) 1
r ≤ ar (1.6)

where FN
n−1 = σ

(
ηNp , 0 ≤ p < n

)
is the σ-field generated by the random measures ηNp , 0 ≤

p < n, while b and ar are universal constants whose values do not depend on the precision
parameter N . The stochastic analysis of the resulting particle approximation model relies
on the analysis of the propagation of the local sampling errors defined in (1.5). The main
objective is to control, at any time horizon n, the fluctuations of the random measures
(γNn , η

N
n ) around their limiting values (γn, ηn) defined by the following random fields:

V γ,N
n :=

√
N
[
γNn − γn

]
with V η,N

n :=
√
N
[
ηNn − ηn

]
. (1.7)

The construction of the N -approximation measures ηNn is far from being unique. In the
present article, we devise three different classes of stochastic particle approximation models.
These stochastic algorithms are discussed in section 4. The first one is a mean field particle
interpretation of the flow of probability measures ηn, and it is presented in section 4.1. The
second model is an interacting particle association model while the third one is a combination
of these two approximation algorithms. These pair of approximation models are respectively
discussed in section 4.2 and in section 4.3. In the context of multi-target tracking models,
the first two approximation models are closely related to the the sequential Monte Carlo
technique presented in the series of articles [20, 21, 25, 26, 27, 28], and respectively, the
Gaussian mixture Probability Hypothesis Density filter discussed in the article by B.-N. Vo,
and W.-K. Ma [22, 23], and the the Rao-Blackwellized Particle multi-target filters presented

RR n° 7376
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by S. Sarkka, A. Vehtari, and J. Lampinen in [17, 18]. These modern stochastic algorithms
are rather simple to implement and computationally tractable, and they exhibit excellent
performance.

Nevertheless, despite advances in recent years [3, 11, 21], these Monte Carlo particle
type multi-target filters remain poorly understood theoretically. One aim of this article is
to present a novel class of stochastic algorithms with a refined analysis including uniform
convergence results w.r.t. the time parameter. We also illustrate these results in the context
of multi-target tracking models, yielding what seems to be the first uniform results of this
type in this subject.

The rest of the article is organized as follows: In section 1.1 we illustrate the ab-
stract measure-valued equations (1.1) with two recent multi-target filters models, namely
the Bernoulli filter and the Probability Hypothesis Density filter (abbreviate PHD filter).
Section 1.2 is devoted to the statement of our main results. In section 2, we describe the
semigroups and the continuity properties of the nonlinear equation 1.1. We show that this
semigroup analysis can be applied to analyse the convergence of the Bernoulli and the PHD
approximation filters. Section 3 is devoted to the stability properties of nonlinear measure-
valued processes of the form (1.2). We present a perturbation technique and a series of
functional contraction inequalities. In the next three sections, we illustrate these results in
the context of Feynman-Kac models, as well as Bernoulli and PHD models. Section 4 is con-
cerned with the detailed presentation and the convergence analysis of three different classes
of particle type approximation models, including mean field type particle approximations
and particle association stochastic algorithms. Finally, the appendix of the article contains
most of technical proofs in the text.

1.1 Measure-valued systems in Multi-target tracking

The measure-valued process given by (1.1) is a generalisation of Feynman-Kac measures.
Its continuous time version naturally arise in the modeling and analysis of the first moments
of spatial branching process [5, 8].

Our major motivation for studying this class of measure-valued system stems from ad-
vanced signal processing, more specifically, multiple target tracking. Driven primarily in
the early 1970’s by aerospace applications such as radar, sonar, guidance, navigation, and
air traffic control, today multi-target filtering has found applications in many diverse disci-
plines, see for example the texts [1], [2] [15] and references therein. These nonlinear filtering
problems deal with jointly estimating the number and states of several interacting targets
given a sequence of partial observations corrupted by noise, false measurements as well as
miss-detection. This rapidly developing subject is, arguably, one of the most interesting con-
tact points between the theory of spatial branching processes, mean field particle systems
and advanced signal processing.

The first connections between stochastic branching processes and multi-target tracking
seem to go back to the article by S. Mori, et. al. [16] published in 1986. However it was
Mahler’s systematic treatment of multi-sensor multi-target filtering using random finite sets
theory [10, 9, 13, 14] that lead to the development novel multi-target filters and sparked
world wide interests. To motivate the article, we briefly outline two recent multi-target
filters that do not fit the standard Feynman-Kacs framework, but fall under the umbrella

RR n° 7376
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of the measure-valued equation (1.1). The first is the Bernoulli filter for joint detection and
tracking of a single target while the second is the Probability Hypothesis Density filter.

1.1.1 Bernoulli filtering

A basic problem in target tracking is that the target of interest may not always be present
and exact knowledge of target existence/presence cannot be determined from observations
due to clutter and detection uncertainty [15]. The Bernoulli filter is a generalisation of
the standard Bayes filter, which accommodates presence and absence of the target [24]. In
a Bernoulli model, the birth of the target at time n + 1 is modelled by a measure µn+1

on En+1. The target enters the scene with a probability µn+1(1) < 1 and its state is
distributed according to the normalised measure µn+1/µn+1(1). At time n, a target Xn has
a probability sn(Xn) of surviving to the next time and evolve to a new state according to a
given elementary Markov transitionMn+1 from En into En+1. At time n+1, the target (if it
exists) generates with probability dn+1(Xn+1) an observation Yn+1 on some auxiliary state
space, say EY

n+1 with likelihood function ln+1(Xn+1, y). This so-called Bernoulli observation
point process is superimposed with an additional and independent Poisson point process with
intensity function hn > 0 to form the occupation (or counting) measure observation process
Yn+1 =

∑
1≤i≤NY

n+1
δY i

n+1
.

In its original form, the Bernoulli filter jointly propagates the probability existence of the
target and the distribution of the target state [24]. Combining the probability of existence
and the state distribution into a single measure, it can be shown that the Bernoulli filter
satisfies the integral equation (1.1), with the probability of existence of the target given by
the mass γn(1) and the distribution of the target state given by the normalised measure
ηn = γn/γn(1). The integral operator for the Bernoulli filter takes the following form

Qn+1,γn(xn, dxn+1) :=
sn(xn)gn(xn)Mn+1(xn, dxn+1) + (γn(1)

−1 − 1)µn+1(dxn+1)

(1− γn(1)) + γn(gn)
(1.8)

where gn is a likelihood function given by

gn(xn) : = (1− dn(xn)) + dn(xn)Yn (ln(xn, ·)/hn) (1.9)

1.1.2 PHD filtering

A more challenging problem arises when the number of targets varies randomly in time,
obscured by clutter, detection uncertainty and data association uncertainty. Suppose that
at a given time n there are NX

n targets (Xi
n)1≤i≤NX

n
each taking values in some measurable

state space En. A target Xi
n, at time n, survives to the next time step with probability

sn(X
i
n) and evolves to a new state according to a given elementary Markov transition M ′

n+1

from En into En+1. In addition Xi
n can spawn new targets at the next time, usually

modelled by a spatial Poisson process with intensity measure Bn+1(X
i
n, ·) on En+1. At the

same time, an independent collection of new targets is added to the current configuration.
This additional and spontaneous branching process is often modeled by a spatial Poisson
process with a prescribed intensity measure µn+1 on En+1. Each target Xi

n+1 generates
with probability dn+1(X

i
n+1) an observation Y i

n+1 on some auxiliary state space, say EY
n+1,

with probability density function gn+1(X
i
n+1, y). In addition to this partial observation

RR n° 7376
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point process we also observe an additional and independent Poisson point process with
intensity function hn. Multi-target tracking concerns the estimation of the random measures
Xn+1 =

∑
1≤i≤NX

n
δXi

n
, given the observation occupation measures Yp =

∑
1≤i≤NY

p
δY i

p
.

The multi-target tracking problem is computationally intractable in general and the
Probability Hypothesis Density PHD (filter), is an approximation that propagates the first-
order statistical moment, or intensity, of the multi-target state forward in time [14]. The
PHD filter satisfies the integral equation (1.1), with the integral operator given below

Qn+1,γn(xn, dxn+1) = gn,γn(xn)Mn+1(xn, dxn+1) + γn(1)
−1 µn+1(dxn+1) (1.10)

where Mn+1 is a Markov kernel defined by

Mn+1(xn, dxn+1) :=
sn(xn)M

′
n+1(xn, dxn+1) +Bn+1(xn, dxn+1)

sn(xn) + bn(xn)
(1.11)

with the branching rate bn(xn) = Bn+1(1)(xn). The likelihood function gn,γn is given by

gn,γn := rn × ĝn,γn with rn := (sn + bn) (1.12)

and

ĝn,γn(xn) := (1− dn(xn)) + dn(xn)

∫
Yn(dy)

gn(xn, yn)

hn(yn) + γn(dngn(., yn))
(1.13)

Since its inception by Mahler [14] in 2003, the PHD filter has attracted substantial interest
to date. The development of numerical solutions for the PHD filter [21], [23] have opened
the door to numerous novel extensions and applications. More details on the derivation of
the PHD filter using random finite sets, Poisson techniques or random measures theoretic
approaches can be found in the series of articles [4, 14, 19].

1.2 Statement of the main results

To describe with some conciseness the main result of this article, we need to introduce some
notation. We let Osc1(En), be the set of En-measurable functions f on En with oscillations
osc(f) = supx,x′ |f(x)− f(x′)| ≤ 1. We denote by µ(f) =

∫
µ(dx) f(x) the Lebesgue

integral of f w.r.t. some measure µ ∈ M(En), and we let ‖µ − ν‖tv be the total variation
distance between two probability measures ν and µ on En.

We assume that the following pair of regularity conditions are satisfied.

(H1) : There exists a series of compact sets In ⊂ (0,∞) such that the initial mass value
γ0(1) ∈ I0, and for any m ∈ In η ∈ P(En), we have

θ−,n(m) ≤ η (Gn,mη) ≤ θ+,n(m) for some pair of positive functions θ+/−,n.

The main implication of condition (H1) comes from the fact that the total mass processes
γn(1) and their N -approximation models γNn (1) are finite and they evolves at every time n
in a series of compact sets

In ⊂ [m−
n ,m

+
n ] ⊂ (0,∞)

RR n° 7376
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with the sequence of parametersm
+/−
n defined by the recursive equationsm−

n+1 = m−
n θ−,n(m

−
n )

and m+
n+1 = m+

n θ+,n(m
+
n ), with the initial conditions m−

0 = m+
0 = γ0(1).

(H2) : For any n ≥ 1, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (In × P(En)), the one
step mappings Γn =

(
Γ1
n,Γ

2
n

)
defined in (1.2) satisfy the following Lipschitz type inequalities:

∣∣Γ1
n(m, η)− Γ1

n(m
′, η′)

∣∣ ≤ c(n) |m−m′|+
∫ ∣∣[η − η′](ϕ)

∣∣ Σ1
n,(m′,η′)(dϕ) (1.14)

∣∣[Γ2
n(m, η)− Γ2

n(m
′, η′)

]
(f)
∣∣ ≤ c(n) |m−m′|+

∫ ∣∣[η − η′](ϕ)
∣∣ Σ2

n,(m′,η′)(f, dϕ) (1.15)

for some finite constants c(n) <∞, and some collection of bounded measures Σ1
n,(m′,η′) and

Σ2
n,(m′,η′)(f, .) on B(En) such that

∫
osc(ϕ) Σ1

n,(m,η)(dϕ) ≤ δ
(
Σ1
n

)
and

∫
osc(ϕ) Σ2

n,(m,η)(f, dϕ) ≤ δ
(
Σ2
n

)

for some finite constant δ
(
Σi
n

)
<∞, i = 1, 2, whose values do dot depend on the parameters

(m, η) ∈ (In × P(En) and f ∈ Osc1(En).
Condition (H2) is a rather basic and weak continuity type property. It states that the one

step transformations of the flow of measures (1.2) are weakly Lipschitz, in the sense that the
mass variations and the integral differences w.r.t. some test function f can be controlled by
the different initial masses and measures w.r.t. a collection of integrals of a possibly infinite
number of test functions. It is satisfied for a large class of one step transformations Γn. In
section 2.3, we will verify that it is satisfied for the general class of Bernoulli and the PHD
filters discussed in section 1.1.1 and section 1.1.2.

We are now in position to state the main results of this article. The first one is concerned
with the exponential stability properties of the semigroup Γp,n =

(
Γ1
p,n,Γ

2
p,n

)
, with 0 ≤ p ≤ n

associated with the one step transformations of the flow (1.2). A more precise description
and the complete proof of the next theorem is provided in section 3.

Theorem 1.1 We let Φ1
p,n,ν and Φ2

p,n,m be the semigroups associated with the one step
transformations of the flow of total masses Φ1

n,νn−1
:= Γ1

n (., νn−1) and measures Φ2
n,mn−1

:=

Γ2
n (mn−1, .), with a fixed collection of measures ν := (νn)n≥0 ∈ ∏n≥0P(En) and masses
m := (mn)n≥0 ∈ ∏n≥0 In. When these semigroups are exponentially stable (in the sense
that they forget exponentially fast their initial conditions) and when the pair of mappings
νn−1 7→ Φ1

n,νn−1
and mn−1 7→ Φ2

n,mn−1
are sufficiently regular then we have the following

contraction inequalities

∣∣Γ1
p,n(u

′, η′)− Γ1
p,n(u, η)

∣∣ ∨
∥∥Γ2

p,n(u
′, η′)− Γ2

p,n(u, η)
∥∥
tv

≤ c e−λ(n−p)

for any p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep), and some finite constants c < ∞ and λ > 0 whose

values do not depend on the time parameters p ≤ n.

The second theorem is concerned with estimating the approximation error associated
with a N -approximation model satisfying condition (1.6). The first part of the theorem is
proved in section 1.2. The proof of the uniform estimates is discussed in section 3.1 (see for
instance lemma 3.4).
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Theorem 1.2 Under the assumptions (H1) and (H2), the semigroup Γp,n satisfies the same
Lipschitz type inequalities as those stated in (1.14) and (1.15) for some collection of mea-
sures Σ1

p,n and Σ2
p,n(f, .) on B(Ep). In addition, for any N -approximation model satisfying

condition (1.6) we have the estimates:

E

(∣∣V γ,N
n (1)

∣∣r
) 1

r ≤ ar

n∑

p=0

δ
(
Σ1
p,n

)
and E

(∣∣V η,N
n (f)

∣∣r
) 1

r ≤ ar

n∑

p=0

δ
(
Σ2
p,n

)
(1.16)

for any r ≥ 1, and N ≥ 1, with some constants ar < ∞ whose values only depend on r.
Furthermore, under the regularity conditions of theorem 1.1 the couple of estimates stated
above are uniform w.r.t. the time horizon; that is, we have that supn≥0

∑n
p=0 δ

(
Σi
p,n

)
<∞,

for any i = 1, 2.

These rather abstract theorems apply to a general class of discrete generation measure-
valued equations of the form (1.1). We illustrate the application of this pair of theorems
in the analysis of the stability properties and the approximation convergence of the pair of
multiple target filters presented in this introductory section. These results can basically be
stated as follows:

• The Bernoulli filter presented in section 1.1.1 with a sufficiently mixing prediction and
almost equal survival and spontaneous births rates sn ∼ µn(1) is exponentially stable.

• The PHD filter presented in section 1.1.2 is exponentially stable for small clutter
intensities and sufficiently high detection probability and spontaneous birth rates.

• In both situations, the estimation error of any N -approximation model satisfying con-
dition (1.6) does not accumulate over time. Furthermore, the uniform rates of conver-
gence provided in theorem 1.2 allows to design stochastic algorithms with prescribed
performance index at any time horizon.

We end this section with some direct consequences of theorem 1.2:
Firstly, we observe that the mean error estimates stated in the above theorem clearly

implies the almost sure convergence results

lim
N→∞

ηNn (f) = ηn(f) and lim
N→∞

γNn (f) = γn(f)

for any bounded function f on En. Furthermore, with some information on the constants
ar, these Lr-mean error bounds can be turned to exponential concentration inequalities. To
be more precise, by lemma 7.3.3 in [5], the collection of constants ar in theorem 1.2, can be
chosen so that

a2r2r ≤ b2r (2r)! 2−r/r! and a2r+1
2r+1 ≤ b2r+1(2r + 1)! 2−r/r! (1.17)

for some b < ∞, whose values do not depend on r. Using the above Lr-mean error bounds
we can establish the following non asymptotic Gaussian tail estimates:

P

(∣∣[ηNn − ηn
]
(f)
∣∣ ≥ bn√

N
+ ǫ

)
≤ exp

(
−Nǫ

2

2b2n

)
with bn ≤ b

n∑

p=0

δ
(
Σ2
p,n

)
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The above result is a direct consequence of the following observation

∀r ≥ 1 E (U r)
1
r ≤ ar b⇒ P (U ≥ b+ ǫ) ≤ exp

(
−ǫ2/(2b)

)

for any non negative random variable U . To check this claim, we use the following Laplace
estimate

∀t ≥ 0 E
(
etU
)

≤ exp

(
(bt)2

2
+ bt

)
⇒ P (U ≥ b+ ǫ) ≤ exp

(
− sup

t≥0

(
ǫt− (bt)2

2

))

It is worth noting that the above constructions allows us to consider with further work
branching particle models in path spaces. These path space models arise in the analysis of
the historical process associated with a branching models as well as the analysis of a filtering
problem of the whole signal path given a series of observations. For instance, let us suppose
that the Markov transitions Mn defined in (1.10 are the elementary transition of a Markov
chain of the following form

Xn :=
(
X ′

p

)
0≤p≤n

∈ En :=
∏

0≤p≤n

E′
p

In other words Xn represents the paths from the origin up to the current time of an auxiliary
Markov chain X ′

n taking values in some measurable state spaces E′
n, with Markov transitions

M ′
n. We assume that the potential functions gn,γn only depend on the terminal state of the

path, in the sense that gn,γn(Xn) = g′n,γn(X
′
n), for some potential function g′n,γn on E′

n. In
multiple target tracking problems, these path space models provide a way to estimate the
conditional intensity of the path of a given target in a multi-target environment related to
some likelihood function that only depends on the terminal state of the signal path.

In practice, it is essential to observe that the mean field particle interpretations of these
path space models simply consist of keeping track of the whole history of each particle. It
can be shown that the resulting particle model can be interpreted as the genealogical tree
model associated with a genetic type model (see for instance [5]). In this situation, ηNn is
the occupation measure of a random genealogical tree, each particle represents the ancestral
lines of the current individuals.

We end this section with some standard notation used in the paper:
We denote respectively by M(E), P(E), and B(E), the set of all finite positive measures

µ on some measurable space (E, E), the convex subset of all probability measures, and
the Banach space of all bounded and measurable functions f equipped with the uniform
norm ‖f‖. We denote by f− and f+ the infimum and the supremum of a function f .
For measurable subsets A ∈ E , in various instances we slightly abuse notation and we
denote µ(A) instead of µ(1A); and we set δa the Dirac measure at a ∈ E. We recall that a
bounded and positive integral operator Q from a measurable space (E1, E1) into an auxiliary
measurable space (E2, E2) is an operator f 7→ Q(f) from B(E2) into B(E1) such that the
functions

x 7→ Q(f)(x) :=

∫

E2

Q(x, dy)f(y)

are E1-measurable and bounded for some measures Q(x, .) ∈ M(E2). These operators also
generate a dual operator µ 7→ µQ from M(E1) into M(E2) defined by (µQ)(f) := µ(Q(f)).
A Markov kernel is a positive and bounded integral operator M with M(1) = 1. We denote
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by Qp,n = Qp+1Qp+2 . . . Qn, with p ≤ n the semigroup associated with a given sequence of
bounded and positive integral operator Qn from some measurable spaces (En−1, En−1) into
(En, En). For p = n, we use the convention Qn,n = Id, the identity operator.

We associate with a bounded positive potential function G : x ∈ E 7→ G(x) ∈ [0,∞),
the Bayes-Boltzmann-Gibbs transformations

ΨG : η ∈ M(E) 7→ ΨG(η) ∈ P(E) with ΨG(η)(dx) :=
1

η(G)
G(x) η(dx)

provided η(G) > 0. We recall that ΨG(η) can be expressed in terms of a Markov transport
equation

ηSη = ΨG(η) (1.18)

for some selection type transition Sη(x, dy). For instance, we can take

Sη(x, dy) :=
ǫ

η(G)
δx(dy) +

(
1− ǫ

η(G)

)
Ψ(G−ǫ)(η)(dy) (1.19)

for any ǫ ≥ 0 s.t. G(x) ≥ ǫ. Notice that for ǫ = 0, we have Sη(x, dy) = ΨG(η)(dy). We can
also choose

Sη(x, dy) := ǫG(x) δx(dy) + (1− ǫG(x)) ΨG(η)(dy) (1.20)

for any ǫ ≥ 0 that may depend on the current measure η, and s.t. ǫG(x) ≤ 1. For instance,
we can choose 1/ǫ to be the η-essential maximum of the potential function G. Finally, in
the context of Bernoulli and PHD filtering we set µn+1 = µn+1/µn+1(1), for any n ≥ 0, the
normalized spontaneous birth measures.

2 Semigroup description

2.1 The Bernoulli filter semigroup

By construction, we notice that the mass process and the normalized measures are given by
the rather simple recursive formulae

γn+1(1) =
γn(1)ηn(gn)

(1− γn(1)) + γn(1)ηn(gn)
Ψgn(ηn)(sn) +

(1− γn(1))

(1− γn(1)) + γn(1)ηn(gn)
µn+1(1)

(2.1)
and

ηn+1 := αn(γn) Ψgnsn(ηn)Mn+1 + (1− αn(γn)) µn+1

with the mappings αn : γ ∈ M(En) 7→ αn(γ) ∈ [0, 1] defined by

αn(γ) =
γ(gnsn)

γ(sngn) + (1− γ(1))µn+1(1)

By construction, if we set γ = m× η then

Γ1
n+1(m, η) =

γ(gn)

(1−m) + γ(gn)
Ψgn(η)(sn) +

(1−m)

(1−m) + γ(gn)
µn+1(1)

Γ2
n+1(m, η) = Ψgnsn(η)Mn+1,γ
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with the collection of Markov transitions Mn+1,γ defined below

Mn+1,γ(x, .) := αn (γ)Mn+1(x, .) + (1− αn (γ)) µn+1 (2.2)

Next we provide an alternative interpretation of the mapping Γ2
n+1. Firstly, observe that

Ψgnsn(η)Mn+1,γ(f) =
η (Qn+1,m(f))

η (Qn+1,m(1))
(2.3)

with the integral operator

Qn+1,m(f)(x) := mgn(x)sn(x)Mn+1(f)(x) + (1−m) µn+1(f)

This implies that
Γ2
n+1(m, η) = Ψ

Ĝn,m
(η)M̂n+1,m

with the potential function

Ĝn,m = mgnsn + (1−m) µn+1(1) (2.4)

and the Markov transitions

M̂n+1,m(f) :=
mgnsn

mgnsn + (1−m) µn+1(1)
Mn+1(f) +

(1−m)µn+1(1)

mgnsn + (1−m) µn+1(1)
µn+1(f)

(2.5)
The condition (H1) is clearly not met for the Bernoulli filter (1.8) when sn = 0 and µn+1(1) =
0, since in this situation γn = 0 for any n ≥ 1. Nevertheless, this condition is met with
In ⊂ (0, 1] and mθ+,n(m) = 1, as long as sn and µn+1(1) are uniformly bounded from below.
It is also met for sn = 0, as long as 0 < µn+1(1) < 1 and the likelihood function given in
(1.9) is uniformly bounded. The condition is also met for µn+1(1) = 0, as long as γ0(1) > 0,
and the likelihood function given in (1.9) and the function sn are uniformly lower bounded.

We prove these assertions using the fact that

γn+1(1) = γ̂n(1) Ψgn(ηn)(sn) + (1− γ̂n(1)) µn+1(1) (2.6)

with the updated mass parameters γ̂n(1) ∈ [0, 1] given below

γ̂n(1) :=
γn(1)ηn(gn)

(1− γn(1)) + γn(1)ηn(gn)

If we set s−n := infEn sn and s+n = supEn
sn then

∀n ≥ 1 γn(1) ∈
[
m−

n ,m
+
n

]

with parameters

m−
n = µn(1) ∧ s−n−1 and m+

n = µn(1) ∨ s+n−1 (≤ 1)

If sn and µn+1(1) are uniformly bounded from below then we have m−
n > 0. In addition,

for the constant mapping sn = µn+1(1), the total mass process is constant

γn+1(1) = m+
n+1 = m−

n+1 = µn+1(1)
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for any n ≥ 0. Furthermore, in this situation the flow of normalized measures is given by
the updating-prediction transformation defined by

∀n ≥ 0 ηn+1 = Ψ
g
(s)
n

(ηn)M
(s)
n+1

with the likelihood function g
(s)
n and the Markov transitions M

(s)
n+1 defined by

g(s)n := sngn + (1− sn) and M
(s)
n+1(f) :=

sngnMn+1(f) + (1− sn) µn+1(f)

sngn + (1− sn)
(2.7)

When µn+1(1) = 0, the flow of normalized measures is again given by a simple updating-
prediction equation

ηn+1 = Ψgnsn(ηn)Mn+1 and γn+1(1) = Ψgn(ηn)(sn)× θηn(gn)(γn(1)) (2.8)

with the increasing mappings θa defined below

x ∈ [0, 1] 7→ θa(x) := ax/[ax+ (1− x)] (2.9)

In addition, if s−n > 0 then

m−
n+1 ≥ s−n × g−nm

−
n

g−nm
−
n + (1−m−

n )
> 0

as long as g−n := infEn gn > 0, and γ0(1) > 0. We prove this inequality using the fact that
the mapping (a, x) ∈ [0,∞[×[0, 1] 7→ θa(x) is increasing in both coordinates. In the case
where sn = 1, using the fact that and θa ◦ θb = θab, we prove that

γn+1(1) = θηn(gn) (γn(1)) = θ∏n
p=0 ηp(gp)

(γ0(1))

Conversely, when γ0(1) < 1 and 0 < µn+1(1) < 1 and sn = 0, for any n ≥ 0, then we
have a constant flow of normalized measures

∀n ≥ 1 ηn = µn

and the total mass process is such that

γn(1) ∈]0, 1[ =⇒ γn+1(1) = µn+1(1) ×
[
1− θµn(gn)

(γn(1))
]
∈]0, 1[

with the convention µ0 = η0, for n = 0. In addition, if µn+1(1) = 1 then we have

γ2(n+1)(1) = θ∏n
p=0(b2p/b2p+1)(γ0(1)) and γ2n+1(1) = θb−1

2n

∏n−1
p=0 (b2p+1/b2p)

(γ0(1))

for any n ≥ 0, with the parameters bn := µn(gn). We prove these formuae using the the fact
that 1− θa(x) = θ1/a(1− x), and θa ◦ θb = θab. This again implies that m−

n > 0 as long as
γ0(1) > 0 and the likelihood function are uniformly lower bounded.
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2.2 The PHD filter semigroup

By construction, if we set γ = m× η then we find that

Γ1
n+1(m, η) = γ(gn,γ) + µn+1(1) and Γ2

n+1(m, η) = Ψgn,γ (η)Mn+1,γ

In the above display, Mn+1,γ is the collection of Markov transitions defined below

Mn+1,γ(x, .) := αn (γ)Mn+1(x, .) + (1− αn (γ)) µn+1 with αn (γ) =
γ(gn,γ)

γ(gn,γ) + µn+1(1)

The interpretation of the updating transformation Ψgn,γ (η) in terms of a Markov trans-
port equation is non unique. For instance, using (1.12) this Bolzmann-Gibbs transformation
can be decomposed into two parts. The first one relates to the undetectable targets and the
second is associated with non clutter observations. An alternative description is provided
below. We consider a virtual auxiliary observation point c (corresponding to undetectable
targets) and set Yc

n = Yn + δc. We also denote by gcn,γ(., y) the function defined below

gγn(., y) =





rn(1− dn) if y = c

rn
dngn(., yn)

hn(y) + γ(dngn(., y))
if y 6= c

In this notation, the updating transformation Ψgn,γ(η) can be rewritten in the following
form

Ψgn,γ(η) = Ψgn,γ
(η) with gn,γ =

∫
Yc
n(dy) g

γ
n(., y)

The averaged potential function gn,γ allows us to measure the likelihood of signal states w.r.t.
the current observation measure Yc

n. Using (1.18), the Bolzmann-Gibbs transformation
Ψgn,γ

(η) can be interpreted as non linear Markov transport equation of the following form

Ψgn,γ
(η) = ηSn,γ and Γ2(m, η) = ηKn+1,γ with Kn+1,γ = Sn,γMn+1,γ (2.10)

for some Markov transitions Sn,γ from En into itself.
We also notice that condition (H1) holds as long as the functions sn, bn, and gn(., yn) are

uniformly bounded and µn(1) > 0. It is also met when µn(1) = 0, as long as rn = (sn + bn)
is uniformly lower bounded and Yn 6= 0 or dn < 1.

2.3 Lipschitz regularity properties

Firstly, we mention that condition (H2) can be replaced by the following regularity condition:
(H ′

2) : For any n ≥ 1, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (In × P(En)), the
integral operators Qn,mη satisfy the following Lipschitz type inequalities:

∥∥Qn,mη(f)−Qn,m′η′(f)
∥∥ ≤ c(n) |m−m′|+

∫ ∣∣[η − η′](ϕ)
∣∣ Σn,(m′,η′)(f, dϕ) (2.11)

for some collection of bounded measures Σn,(m′,η′)(f, .) on B(En) such that

∫
osc(ϕ) Σn,(m,η)(f, dϕ) ≤ δ (Σn)
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for some finite constant δ (Σn) <∞, whose values do dot depend on the parameters (m, η) ∈
(In × P(En)) and f ∈ Osc1(En).

We prove (H ′
2) ⇒ (1.14) using the decompositions

mηQn,mη −m′η′Qn,m′η′ = mη
[
Qn,mη −Qn,m′η′

]
+
[
mη −m′η′

]
Qn,m′η′

and of course [mη −m′η′] = [m−m′] η+m′ [η − η′]. To prove (H ′
2) ⇒ (1.15), we let γ = mη

and γ′ = m′η′ and we use the decomposition

[
Γ2
n(m, η) − Γ2

n(m
′, η′)

]
(f) =

1

γQn,γ(1)

[
γQn,γ − γ′Qn,γ′

] (
f − Γ2

n(m
′, η′)(f)

)

The Bernoulli filter (1.8) satisfies (H ′
2), as long as the likelihood functions gn given in

(1.9) are uniformly bounded above. In this situation, (2.11) is met with

∥∥Qn,mη(f)−Qn,m′η′(f)
∥∥ ≤ c(n) |m−m′|+ c′(n)

∣∣[η − η′](gn)
∣∣

for some finite constant c′(n) <∞.
The PHD equation satisfies (H ′

2), as long as the functions hn(y) + g′n,y with g′n,y :=
dngn(., y) are uniformly bounded above and below. To prove this claim, we simply use the
fact that ∥∥ĝn,γ − ĝn,γ′

∥∥ ≤ cn

[
|m′ −m|+

∫
Yn(dy)

∣∣[η′ − η](g′n,y)
∣∣
]

This estimate is a direct consequence of the following one

ĝn,γ(x)− ĝn,γ′(x) =

∫
Yn(dy)

g′n,y(x)

hn(y) + γ(g′n,y)

[γ′ − γ] (g′n,y)

hn(y) + γ′(g′n,y)

Next, we provide a pivotal regularity property of the semigroup (Γp,n)0≤p≤n associated
with the one step transformations of the flow (1.2).

Proposition 2.1 We assume that conditions (H1) and (H2) are satisfied. Then, for any
0 ≤ p ≤ n, f ∈ Osc1(En), and any (m, η), (m′, η′) ∈ (Ip × P(Ep)), we have the following
Lipschitz type inequalities:

∣∣Γ1
p,n(m, η)− Γ1

p,n(m
′, η′)

∣∣ ≤ cp(n) |m−m′|+
∫ ∣∣[η − η′](ϕ)

∣∣ Σ1
p,n,(m′,η′)(dϕ)

∣∣[Γ2
p,n(m, η)− Γ2

p,n(m
′, η′)

]
(f)
∣∣ ≤ cp(n) |m−m′|+

∫ ∣∣[η − η′](ϕ)
∣∣ Σ2

p,n,(m′,η′)(f, dϕ)

for some finite constants cp(n) < ∞, and some collection of bounded measures Σ1
p,n,(m′,η′)

and Σ2
p,n,(m′,η′)(f, .) on B(Ep) such that

∫
osc(ϕ) Σ1

p,n,(m,η)(dϕ) ≤ δ
(
Σ1
p,n

)
and

∫
osc(ϕ) Σ2

p,n,(m,η)(f, dϕ) ≤ δ
(
Σ2
p,n

)
(2.12)

for some finite constant δ
(
Σi
p,n

)
<∞, i = 1, 2, whose values do dot depend on the parame-

ters (m, η) ∈ (Ip × P(Ep) and f ∈ Osc1(En).
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Proof:
To prove this proposition, we use a backward induction on the parameter 1 ≤ p ≤ n. For
p = (n − 1), we have Γi

n−1,n = Γi
n, with i = 1, 2, so that the desired result is satisfied for

p = (n − 1). We further assume that the estimates hold at a given rank p < n. To prove
the estimates at rank (p− 1), we recall that

Γp−1,n(m, η) = Γp,n (Γp(m, η)) ⇒ ∀i = 1, 2 Γi
p−1,n(m, η) = Γi

p,n (Γp(m, η))

Under the induction hypothesis

∣∣Γ1
p−1,n(m, η) − Γ1

p−1,n(m
′, η′)

∣∣ =
∣∣Γ1

p,n (Γp(m, η)) − Γ1
p,n

(
Γp(m

′, η′)
)∣∣

≤ cp(n) |Γ1
p(m, η) − Γ1

p(m
′, η′)|

+

∫ ∣∣[Γ2
p(m, η)− Γ2

p(m
′, η′)

]
(ϕ)
∣∣ Σ1

p,n,Γp(m′,η′)(dϕ)

On the other hand

|Γ1
p(m, η) − Γ1

p(m
′, η′)| ≤ c(p) |m−m′|+

∫ ∣∣[η − η′](ϕ)
∣∣ Σ1

p,(m′,η′)(dϕ)

and

∣∣[Γ2
p(m, η)− Γ2

p(m
′, η′)

]
(ϕ)
∣∣ ≤ c(p) |m−m′|+

∫ ∣∣[η − η′](ψ)
∣∣ Σ2

p,(m′,η′)(ϕ, dψ)

The end of the proof is now clear. The analysis of Γ2
p−1,n follows the same line of arguments

and is omitted. This ends the proof of the proposition.

2.4 Proof of theorem 1.2

This section is mainly concerned with the proof of the couple of estimates (1.16) stated in
theorem 1.2.

We use the decomposition

(
γNn (1), ηNn

)
− (γn(1), ηn) =

[
Γ0,n

(
γN0 (1), ηN0

)
− Γ0,n (γ0(1), η0)

]

+

n∑

p=1

[
Γp,n

(
γNp (1), ηNp

)
− Γp−1,n

(
γNp−1(1), η

N
p−1

)]
(2.13)

and the fact that

Γp−1,p

(
γNp−1(1), η

N
p−1

)
=

(
γNp (1),Γ2

p−1,p

(
γNp−1(1), η

N
p−1

))

to show that

γNn (1)− γn(1) =
[
Γ1
0,n

(
γN0 (1), ηN0

)
− Γ1

0,n (γ0(1), η0)
]

+

n∑

p=1

[
Γ1
p,n

(
γNp (1), ηNp

)
− Γ1

p,n

(
γNp (1),Γ2

p−1,p

(
γNp−1(1), η

N
p−1

))]
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Recalling that γN0 (1) = γ0(1), using proposition 2.1, we find that

√
N
∣∣γNn (1) − γn(1)

∣∣ ≤
n∑

p=0

cp(n)

∫ ∣∣[WN
p (ϕ)

∣∣ Σ(N,1)
p,n (dϕ)

with the predictable measure Σ
(N,1)
p,n = Σ1

p,n,(m,η) associated with the parameters (m, η) =

(γNp (1),Γ2
p−1,p

(
γNp−1(1), η

N
p−1

)
), with 0 < p ≤ n; and for p = 0, we set Σ

(N,1)
0,n = Σ0,n,(γ0(1),η0).

Combing the generalized Minkowski’s inequality with (1.6) we have

E

(∣∣∣∣
∫ ∣∣WN

p (ϕ)
∣∣ Σ(N,1)

p,n (dϕ)

∣∣∣∣
r ∣∣∣F (N)

p−1

) 1
r

≤ ar δ
(
Σ1
p,n

)

for some constants ar whose values only depend on the time parameter. This clearly implies
that

E

(∣∣γNn (1) − γn(1)
∣∣r
) 1

r ≤ ar

n∑

p=0

δ
(
Σ1
p,n

)

The normalized occupation measures can be analyzed in the same way using the decompo-
sition given below:

ηNn − ηn =
[
Γ2
0,n

(
γN0 (1), ηN0

)
− Γ2

0,n (γ0(1), η0)
]

+

n∑

p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p,n

(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)]

This ends the proof of the theorem 1.2.

3 Functional contraction inequalities

3.1 Stability properties

This section is concerned with the long time behavior of nonlinear measure-valued processes
of the form (1.2). The complexity of these models depend in part on the interaction function
between the flow of masses γn(1) and the flow of probability measures ηn = γn/γn(1). One
natural way to start the analysis of these models is to study the stability properties of the
measure-valued semigroup associated with a fixed flow of masses, and vice versa. These two
mathematical objects are defined below.

Definition 3.1 We associate with a flow of masses m = (mn)n≥0 ∈
∏

n≥0 In and probability
measures ν := (νn)n≥0 ∈

∏
n≥0 P(En) the pair of semigroups

Φ1
p,n,ν := Φ1

n,νn−1
◦ . . . ◦ Φ1

1,ν0 and Φ2
p,n,m := Φ2

n,mn−1
◦ . . . ◦ Φ2

1,m0
(3.1)

with 0 ≤ p ≤ n, and the one step transformations

Φ1
n,νn−1

: u ∈ In−1 7→ Φ1
n,νn−1

(u) := Γ1
n (u, νn−1) ∈ In

Φ2
n,mn−1

: η ∈ P(En−1) 7→ Φ2
n,mn−1

(η) := Γ2
n (mn−1, η) ∈ P(En)
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By construction, using a simple induction on the time parameter n, we find that

(m0, ν0) = (γ0(1), η0) and ∀n ≥ 1 mn = Φ1
n,νn−1

(mn−1) and νn = Φ2
n,mn−1

(νn−1)

m
∀n ≥ 0 (mn, νn) = (γn(1), ηn)

In the cases that are of particular interest, the semigroups Φ1
p,n,ν and Φ2

p,n,m will have a
Feynman-Kac representation. These models are rather well understood. A brief review on
their contraction properties is provided in section 3.2. Further details can be found in the
monograph [5]. The first basic regularity property of these models which are needed is the
following weak Lipschitz type property :

(Lip(Φ)) For any p ≤ n, u, u′ ∈ Ip, η, η
′ ∈ P(Ep) and f ∈ Osc1(En) the following

Lipschitz inequalities

∣∣Φ1
p,n,ν(u)− Φ1

p,n,ν(u
′)
∣∣ ≤ a1p,n |u− u′| (3.2)

∣∣[Φ2
p,n,m(η)− Φ2

p,n,m(η
′)
]
(f)
∣∣ ≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η′(f, dϕ) (3.3)

for some finite constants aip,n <∞, with i = 1, 2, and some collection of Markov transitions
Ω2
p,n,η′ from Osc1(En) into Osc1(Ep), with p ≤ n, whose values only depend on the parame-

ters p, n, resp. p, n and η′.

The semigroups Φ1
p,n,ν and Φ2

p,n,m may or may bot be asymptotically stable depending
on whether aip,n tends to 0, as (n − p) → ∞. In section 3.3 we provide a set of easily
checked regularity conditions under which the semigroups associated with the Bernoulli
models discussed in 2.1 are asymptotically stable.

The second step in the study of the stability properties of the semigroups associated
with the flow (1.2) is the following continuity property:

(Cont(Φ)) For any n ≥ 1, u, u′ ∈ In−1, η, η
′ ∈ P(En−1) and any f ∈ Osc1(En)

∣∣Φ1
n,η(u)− Φ1

n,η′(u)
∣∣ ≤ τ1n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω1

n,η′(dϕ) (3.4)

∣∣[Φ2
n,u(η)− Φ2

n,u′(η)
]
(f)
∣∣ ≤ τ2n |u− u′| (3.5)

for some finite constants τ in < ∞, with i = 1, 2, and some collection probability measures
Ω1
n,ν′ on Osc1(En−1), whose values only depend on the parameters n, resp. n and ν ′.
This elementary continuity condition allows us to enter the contraction properties of

the semigroups Φ1
p,n,ν and Φ2

p,n,m in the stability analysis of the flow of measures (1.2).
The resulting functional contraction inequalities will be described in terms of the following
collection of parameters.

Definition 3.2 When the couple of conditions (Lip(Φ)) and (Cont(Φ)) stated above are
satisfied, for any i = 1, 2 and p ≤ n we set

aip,n = τ ip+1 a
i
p+1,n bp,n =

∑

p<q<n

a1p,q a
2
q,n and b′p,n =

∑

p≤q<n

a1p,q a
2
q,n (3.6)
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The main result of this section is the following proposition.

Proposition 3.3 If conditions (Lip(Φ)) and (Cont(Φ)) are satisfied, then for any p ≤ n,
u, u′ ∈ Ip, η, η

′ ∈ P(Ep) and f ∈ Osc1(En) we have the following Lipschitz inequalities

∣∣Γ1
p,n(u

′, η′)− Γ1
p,n(u, η)

∣∣ ≤ c1,1p,n |u− u′|+ c1,2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Σ1

p,n,u′,η′(dϕ)

∣∣Γ2
p,n(u

′, η′)(f)− Γ2
p,n(u, η)(f)

]
≤ c2,1p,n |u− u′|+ c2,2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Σ2

p,n,u′η′(f, dϕ)

for some probability measures Σ1
p,n,u′,η′(dϕ) and Markov transitions Σ2

p,n,m′η′ , with the col-
lection of parameters

c1,1p,n = a1p,n +
∑

p≤q<n

c2,1p,q a
1
q,n and c1,2p,n =

∑

p≤q<n

c2,2p,q a
1
q,n

c2,1p,n = b′p,n +

n−p∑

l=1

∑

p≤r1<...rl<n

b′p,r1

∏

1≤k≤l

brk,rk+1

c2,2p,n = a2p,n +

n−p∑

l=1

∑

p≤r1<...rl<n

a2p,r1

∏

1≤k≤l

brk,rk+1
, with the convention rl+1 = n.

In particular, the collection of parameters δ
(
Σi
p,n

)
i=1,2

, p ≤ n introduced in (1.16) and

(2.12) are such that
δ
(
Σ1
p,n

)
≤ c1,2p,n and δ

(
Σ2
p,n

)
≤ c2,2p,n

The proof of this proposition is rather technical and it is postponed to section 5.3 in the
appendix. Now we conclude this section with a direct application of the above estimates.
The proof of the theorem 1.1 stated in the introduction and the uniform estimates discussed
in theorem 1.2 are a direct consequence of the following lemma.

Lemma 3.4 Suppose that τ i = supn≥1 τ
i
n <∞, and aip,n ≤ ci e

−λi(n−p), for any p ≤ n, and
some finite parameters ci <∞ and λi > 0, with i = 1, 2, satisfying the following condition

λ1 6= λ2 and c1c2 τ
1τ2 ≤

(
1− e−(λ1∧λ2)

) (
e−(λ1∧λ2) − e−(λ1∨λ2)

)

Then, for any i, j ∈ {1, 2} we have

ci,jp,n ≤ ci,j e−λ(n−p) with λ = (λ1 ∧ λ2)− log

(
1 + cτ1τ2

e(λ1∧λ2)

e−(λ1∧λ2) − e−(λ1∨λ2)

)
> 0

and the parameters ci,j defined below

c2,2 = c2 c2,1 = c1c2τ
2/
(
e−(λ1∧λ2) − e−(λ1∨λ2)

)

c1,1 = c1
(
1 + c2,1τ1/(e−λ − e−λ1)

)
c1,2 = c1c2τ

1/(e−λ − e−λ1)

In particular, for any N -approximation models (γNn (1), ηNn ) of the flow (γn(1), ηn) satisfying
condition (1.6), the Lr-mean error estimates presented in (1.16) are uniform w.r.t. the time
parameter

sup
n≥0

E

(∣∣V γ,N
n (1)

∣∣r
) 1

r ≤ ar c
1,2/(1 − e−λ) and sup

n≥0
E

(∣∣V η,N
n (f)

∣∣r
) 1

r ≤ ar c
2,2/(1− e−λ)

with some constants ar <∞ whose values only depend on r.
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Proof:
Under the premise of the lemma

bp,n ≤ cτ
∑

p<q<n

e−λ1(q−(p+1)) e−λ2(n−(q+1)) and b′p,n ≤ cτ2
∑

p≤q<n

e−λ1(q−p) e−λ2(n−(q+1))

with c = c1c2 and τ = τ1τ2. We further assume that λ1 > λ2 and we set ∆ = |λ1 − λ2|.

bp,n ≤ cτe−λ2((n−1)−(p+1))
∑

p<q<n

e−∆(q−(p+1)) ≤ cτe−λ2((n−1)−(p+1))/(1− e−∆)

In the same way, if λ2 > λ1 we have

bp,n ≤ cτe−λ1((n−1)−(p+1))
∑

p<q<n

e−∆(n−(q+1)) ≤ cτe−λ1((n−1)−(p+1))/(1− e−∆)

This implies that
bp,n ≤ cτe−(λ1∧λ2)((n−1)−(p+1))/(1 − e−∆)

In much the same way, it can be shown that

b′p,n =≤ cτ2e−(λ1∧λ2)((n−1)−p)/(1− e−∆) (3.7)

We are now in a position to estimate the parameters ci,jp,n. Firstly, we observe that

c2,2p,n ≤ c2 e
−λ2(n−p) + c2

n−p∑

l=1

(
cτ1τ2e2(λ1∧λ2)

1− e−∆

)l ∑

p≤r1<...rl<n

e−λ2(r1−p)e−(λ1∧λ2)(n−r1)

When λ1 > λ2, we find that

c2,2p,n ≤ c2 e
−λ2(n−p)

n−p∑

l=0

(
cτe2λ2

1− e−∆

)l(
n− p
l

)

and therefore

c2,2p,n ≤ c2 e
−λ2(n−p)

(
1 + cτ

e2λ2

1− e−∆

)n−p

⇒ c2,2p,n = c2 e
−λ(n−p)

with

λ = λ2 − log

(
1 + cτ

eλ2

e−λ2 − e−λ1

)
> 0

as long as

cτ ≤
(
1− e−λ2

) (
e−λ2 − e−λ1

)

When λ2 > λ1 we have λ2 = λ1 +∆, we find that

c2,2p,n ≤ c2 e
−λ2(n−p) + c2e

−λ1(n−p)
n−p∑

l=1

(
cτe2λ1

1− e−∆

)l ∑

p≤r1<...rl<n

e−∆(r1−p)
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from which it follows that

c2,2p,n ≤ c2 e
−λ1(n−p)

(
1 + cτ

e2λ1

1− e−∆

)n−p

Using a similar line of argument as above, we have

c2,2p,n ≤ c2 e
−λ(n−p)

with

λ = λ1 − log

(
1 + cτ

eλ1

e−λ1 − e−λ2

)
> 0

as long as

cτ ≤
(
1− e−λ1

) (
e−λ1 − e−λ2

)

We conclude that
c2,2p,n ≤ c2 e

−λ(n−p)

with

λ = (λ1 ∧ λ2)− log

(
1 + cτ

e(λ1∧λ2)

e−(λ1∧λ2) − e−(λ1∨λ2)

)
> 0

as long as

cτ ≤
(
1− e−(λ1∧λ2)

) (
e−(λ1∧λ2) − e−(λ1∨λ2)

)

Using (3.7) we also show that

c2,1p,n ≤ c2,1 e−λ(n−p) with c2,1 = cτ2
1

e−(λ1∧λ2) − e−(λ1∨λ2)

Using these estimates

c1,1p,n = c1 e
−λ1(n−p) +

∑

p≤q<n

c2,1p,q c1τ
1 e−λ1(n−(q+1))

and
c1,1p,n = c1 e

−λ1(n−p) + c2,1c1τ
1
∑

p≤q<n

e−λ(q−p) e−λ1(n−(q+1))

Since λ1 > λ we find that

c1,1p,n ≤ c1 e
−λ1(n−p) + c2,1c1τ

1 e−λ((n−1)−p)/(1− e−∆′

) with ∆′ = λ1 − λ > 0

This yields

c1,1p,n ≤ c1,1 e−λ(n−p) with c1,1 := c1

(
1 + c2,1τ1/(e−λ − e−λ1)

)

Finally, we observe that

c1,2p,n = cτ1
∑

p≤q<n

e−λ(q−p) e−λ1(n−(q+1)) ≤ cτ1 e−λ((n−1)−p)/(1 − e−∆′

)

which implies that

c1,2p,n ≤ c1,2 e−λ(n−p) with c1,2 := cτ1/(e−λ − e−λ1)

This ends the proof of the lemma.
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3.2 Feynman-Kac models

We let Qp,n, with 0 ≤ p ≤ n, be the Feynman-Kac semi-group associated with a sequence of
bounded and positive integral operator Qn from some measurable spaces (En−1, En−1) into
(En, En). For any n ≥ 1, we denote by Gn−1 and Mn the potential function on En−1 and
the Markov transition from En−1 into En defined below

Gn−1(x) = Qn(1)(x) and Mn(f)(x) =
Qn(f)(x)

Qn(1)(x)

We also denote by Φp,n, 0 ≤ p ≤ n, the nonlinear semigroup from P(Ep) into P(En) defined
below

∀η ∈ P(Ep), ∀f ∈ B(En) Φp,n(η)(f) = ηQp,n(f)/ηQp,n(1) (3.8)

As usual we use the convention Φn,n = Id, for p = n. It is important to observe that this
semigroup is alternatively defined by the formulae

Φp,n(η)(f) =
η(Gp,n Pp,n(f))

η(Gp,n)
with Gp,n = Qp,n(1) and Pp,n(fn) = Qp,n(fn)/Qp,n(1)

The next two parameters

rp,n = sup
x,x′∈Ep

Gp,n(x)

Gp,n(x′)
and β(Pp,n) = sup

xp,yp∈Ep

‖Pp,n(xp, .)− Pp,n(yp, .)‖tv (3.9)

measure respectively the relative oscillations of the potential functions Gp,n and the contrac-
tion properties of the Markov transition Pp,n. Various estimates in the forthcoming sections
will be expressed in terms of these parameters. For instance and for further use in several
places in this article, we have the following Lipschitz regularity property.

Proposition 3.5 ([6]) For any fn ∈ Osc1(En) we have

|[Φp,n(ηp)− Φp,n(µp)] (fn)| ≤ 2 rp,n β(Pp,n)
∣∣[ηp − µp]P

µp

p,n(fn)
∣∣ (3.10)

for some function P
µp

p,n(fn) ∈ Osc1(Ep) that doesn’t depends on the measure ηp.

Our next objective is to estimate the the contraction coefficients rp,n and β(Pp,n) in terms
of the mixing type properties of the semigroup

Mp,n(xp, dxn) :=Mp+1Mp+2 . . .Mn(xp, dxn)

associated with the Markov operators Mn. We introduce the following regularity condition.

(MG)m There exists an integer m ≥ 1 and a sequence (ǫp(M))p≥0 ∈ (0, 1)N and some
finite constant rp such that for any p ≥ 0 and any (x, x′) ∈ E2

p we have

Mp,p+m(xp, .) ≥ ǫp(m) Mp,p+m(x
′
p, .) and Gp(x) ≤ rp Gn(x

′) (3.11)

It is well known that the above condition is satisfied for any aperiodic and irreducible
Markov chains on finite spaces. Loosely speaking, for non compact spaces this condition is
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related to the tails of the transition distributions on the boundaries of the state space. For
instance, let us suppose that En = R and Mn is the bi-Laplace transition given by

Mn(x, dy) =
c(n)

2
e−c(n) |y−An(x)| dy

for some c(n) > 0 and some drift function An with bounded oscillations osc(An) < ∞. In
this case, it is readily checked that condition (M)m holds true for m = 1 with the parameter
ǫn−1(1) = exp (−c(n) osc(An)).

Under the mixing type condition (M)m we have for any n ≥ m ≥ 1, and p ≥ 1

rp,p+n ≤ ǫp(m)−1
∏

0≤k<m

rp+k (3.12)

and

β(Pp,p+n) ≤
⌊n/m⌋−1∏

k=0

(
1− ǫ

(m)
p+km

)
with ǫ(m)

p := ǫ2p(m)
∏

0<k<m

r−1
p+k (3.13)

Notice that these estimates are also valid for any n ≥ 0. Several contraction inequalities
can be deduced from these estimates (see for instance chapter 4 of the book [5]). To give a
flavor of these results, we further assume that (M)m is satisfied with m = 1, and we have
ǫ = infn ǫn(1) > 0. In this case, we can show that

rp,p+n ≤ rp/ǫ and β(Pp,p+n) ≤
(
1− ǫ2

)n

We end this short section with a direct consequence of proposition 3.5.

Corollary 3.6 Consider the Bernoulli semigroup presented in section 2.1. For constant
mappings sn = µn+1(1), the first component mapping is constant Φ1

n+1,νn(u) = sn and the

second component mapping Φ2
n+1,mn

(η) = Ψ
g
(s)
n
(η)M

(s)
n+1 induces a Feynman-Kac semigroup

with the likelihood function g
(s)
n and the Markov transitions M

(s)
n+1 defined in (2.7). In this

situation, the condition (3.2) is clearly met with a1p,n = 0, for any p < n,. We further assume
that the semigroup of associated with the Markov transitions Mn satisfies the mixing property
stated in the l.h.s. of (3.11) for some integer m ≥ 1 and some parameter ǫp(m) ∈]0, 1]. In
this situation, the condition (3.3) is also met with the collection of parameters a2p,n given
below

a2p,n ≤ 2 ρp(m)

⌊(n−p)/m⌋−1∏

k=0

(
1− ǫ

(m,s)
p+km

)

with

ρp(m) := ǫ−1
p (m)

∏

p≤k<p+m

r2k(sk)rk(1) and ǫ(s,m)
p = ǫ2p(m)rp(sp)/

∏

p≤k<p+m

rk(sk)
3rk(1)

2

and the collection of parameters rn(sn) defined below

rn(sn) :=
sng

+
n + (1− sn)

sng
−
n + (1− sn)

(≤ rn(1))

RR n° 7376



Stability and Approximation of Branching Distribution Flows 25

3.3 Bernoulli models

This section is concerned with the contraction properties of the semigroups Φ1
p,n,ν and Φ2

p,n,m

associated with the Bernoulli filter discussed in section 2.1. Before proceeding, we provide
a brief discussion on the oscillations of the likelihood functions gn given below

gn(xn) = (1− dn(xn)) + dn(xn)Yn (ln(xn, ·)/hn)

in terms of some [0, 1]-valued detection probability functions dn, some local likelihood func-
tions ln, and some positive clutter intensity function hn. The oscillations of these likelihood
functions strongly depend on the nature of the functions (dn, hn, ln).

Assuming that h−n > 0 we have

(1− d◦,−n ) + d◦,−n

l−n
h+n

Yn (1) ≤ g−n ≤ g+n ≤ (1− d◦,+n ) + d◦,+n

l+n
h−n

Yn (1) (3.14)

with the parameters
d◦,+n = d+n 1l+nYn(1)≥h−

n
+ d−n 1l+nYn(1)<h−

n

d◦,−n = d−n 1l−n Yn(1)≥h+
n
+ d+n 1l−n Yn(1)<h+

n

The semigroup contraction inequalities developed in this section will be expressed in terms
of the following parameters

δn(sg) :=
g+n s

+
n

g−n s
−
n
, δn(g) :=

g+n
g−n

and δ′n(g) :=
1

g−n
∧ g+n

For time homogeneous models (dn, hn, ln) = (d, h, l), with constant detection probability
dn(x) = d and uniformly bounded number of observations supn Yn(1) ≤ Y+(1) < ∞ we
have the following estimates

(1− d) ≤ g−n ≤ g+n ≤ (1− d) + d
l+

h−
Y+ (1)

In this situation, we have

δn(g) ≤ 1 +
d

1− d

l+

h−
Y+ (1)

For small clutter intensity function with h− > 0 and l− > 0 we also have the observation

free estimates g+n
g−n

≤ l+h+

l−h− , from which we find that the upper bound

δ(g) := sup
n≥0

δn(g) ≤ inf

{
1 +

d

1− d

l+

h−
Y (1) ,

l+h+

l−h−

}
(3.15)

and for d < 1

δ′(g) := sup
n≥0

δ′n(g) ≤ sup

{
(1− d) + d

l+

h−
Y (1) ,

1

1− d

}
(3.16)

To be more precise, if we set infn Yn(1) = Y−(1) then

1 ≤ l−

h+
Y(1)− ⇒ δ′(g) ≤ (1− d) + d

l+

h−
Y+ (1)
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In addition, if we have d(1 − d)Y(1) ≤ h−/l+ and d < 1 then we find the the observation
free estimates

dY(1) l+/h− ≤ 1/(1 − d) ⇒ δ′(g) ≤ (1− d) +
1

1− d

Conversely, we have the observation free estimates

l+

h−
Y(1)+ ≤ 1 ⇒ δ′(g) ≤ 1

(1− d) + d l−

h+ Y− (1)
≤ 1

1− d

We are now in position to state the main result of this section.

Theorem 3.7 If µn+1(1) ∈]0, 1[, 0 < s−n ≤ s+n < 1, and the semigroup Mp,n satisfies the
condition stated in the l.h.s. of (3.11) for some integer m ≥ 1 and some positive constant
ǫp(m), then the condition (Lip(Φ)) is met with

a1p,n ≤ 2 ǫ−1
p δ′p(g)

∏

p≤k<p+n

(
1− ǫ2k

)
and a2p,n ≤ 2 ρp(m)

⌊n/m⌋−1∏

k=0

(
1− ǫ

(m)
p+km

)

with some parameters

ǫn ≥ inf

{
s−n

µn+1(1)
,
µn+1(1)

s+n
,

1− s+n
1− µn+1(1)

,
1− µn+1(1)

1− s−n

}

and

ρp(m) ≤ ǫp(m)−1
∏

0≤k<m

δp+k(sg)
3 and ǫ(m)

p ≥ ǫp(m)2 δp(sg)
−4

∏

0<k<m

δp+k(sg)
−5

In addition condition (Cont(Φ)) is met with

τ1n+1 ≤ δn(g)
[
(s+n − s−n ) + ‖sn − µn+1(1)‖

]
and τ2n+1 ≤ δ′n(g) sup

{
µn+1

s−n
,

s+n
µn+1(1)

}

The proof of the theorem is postponed to section 5.2. To give a flavour of these estimates
we examine time homogeneous models

(dn, hn, ln, sn, µn) = (d, h, l, s, µ)

with constant detection and survival probabilities dn(x) = d, sn(x) = s, and uniformly
bounded number of observations supn Yn(1) ≤ Y(1) < ∞. In this situation, we have

(ǫp(m), ǫ
(s)
p (m)) = (ǫ(m), ǫ(s)(m)) and using the estimates (3.15) we prove the following

bounds

τ1n+1 ≤ δ(g) |s− µ(1)| and τ2n+1 ≤ δ′(g)
µ(1) ∨ s
µ(1) ∧ s

and

a10,n ≤ 2ǫ−1δ′(g)
(
1− ǫ2

)n
and a20,n ≤ 2ǫ(m)−1δ(g)3m

(
1− ǫ(m)2δ(g)−5m+1

)⌊n/m⌋
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with some parameter ǫ such that

inf

{
s

µ(1)
,
µ(1)

s
,

1− s

1− µ(1)
,
1− µ(1)

1− s

}
≤ ǫ ≤ 1

It is also readily verified that the assumptions of lemma 3.4 are satisfied with the parameters

τ1 ≤ δ(g) |s− µ(1)| τ2 ≤ δ′(g) ((µ(1) ∨ s)/(µ(1) ∧ s))
c1 = 2ǫ−1δ′(g) c2 = 2ǫ(m)−1

(
1− ǫ(m)2δ(g)−5m+1

)−1
δ(g)3m

and the Lyapunov constants

λ1 = − log (1− ǫ2) and λ2 = − 1

m
log
(
1− ǫ(m)2δ(g)−5m+1

)

We notice that ǫ tends to 1 and τ1 tends to 0, as |s − µ(1)| tends to 0. Thus, there exists
some ς ≥ 0 such that

λ1 > λ2 and c1c2τ
1τ2 <

(
1− e−λ2

) (
e−λ2 − e−λ1

)

as long as |s− µ(1)| ≤ ς. We summarize this discussion with the following corollary.

Corollary 3.8 Consider the time homogeneous model discussed above. Under the assump-
tions of theorem 3.7, for any N -approximation models (γNn (1), ηNn ) of the Bernoulli model
(γn(1), ηn) satisfying condition (1.6), the Lr-mean error estimates presented in (1.16) are
uniform w.r.t. the time parameter

sup
n≥0

E

(∣∣V γ,N
n (1)

∣∣r
) 1

r ≤ ar c
1,2/(1 − e−λ) and sup

n≥0
E

(∣∣V η,N
n (f)

∣∣r
) 1

r ≤ ar c
2,2/(1− e−λ)

with the parameters (c1,2, c2,2, λ) defined in lemma 3.4, and some finite constants ar < ∞
whose values only depend on r.

Remark 3.9 When µn+1(1) = 0 we have seen in (2.8) that

Φ1
n+1,νn(u) = Ψgn(νn)(sn)× θνn(gn)(u) and Φ2

n+1,mn
(η) = Ψgnsn(η)Mn+1

with the collection of mappings θa, with a ∈ [0,∞[, defined in (2.9). Using the fact that

∣∣Φ1
n+1,νn(u)− Φ1

n+1,νn(u
′)
∣∣ =

Ψgn(νn)(sn) νn(gn)

[ν(gn)u+ (1− u)] [ν(gn)u′ + (1− u′)]
|u− u′|

one proves that (3.2) is met with the rather crude upper bound

a1p,n ≤
∏

p≤k<n

ak,k+1 and a1k,k+1 ≤ (s+k g
+
k )/(1 ∧ g−k )2

We also notice that the second component mapping Φ2
n+1,mn

doesn’t depends on the param-
eter mn, and it induces a Feynman-Kac semigroup of the same form as the one studied in
section 3.2. Assuming that the mixing condition stated in the l.h.s. of (3.11) is satisfied
some integer m ≥ 1 and some parameter ǫp(m) > 0, one can prove that (3.3) is met with
the collection of parameters a2p,n given below

a2p,n ≤ 2 ρp(m)

⌊(n−p)/m⌋−1∏

k=0

(
1− ǫ

(m)
p+km

)
with ρp(m) = ǫ−1

p (m)
∏

p≤q<p+m

δq(sg)

and the collection of parameters ǫ
(m)
p = ǫ

(m)
p = ǫ2p(m)/

∏
p<q<p+m δq(sg).
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3.4 PHD Models

This section is concerned with the contraction properties of the semigroups Φ1
p,n,ν and Φ2

p,n,m

associated with the PHD filter discussed in section 1.1.2 and in section 2.2.
The analysis of these nonlinear models is much more involved than the one of the

Bernoulli models. We simplify the analysis and we further assume that the clutter intensity
function, the detectability rate as well as the survival and the spawning rates introduced in
section 2.2 are time homogeneous and constants functions, and we set

(bn(x), hn(x), sn(x), rn(x)) = (b, h, s, r)

To simplify the presentation, we also assume that the state spaces, the Markov transitions
of the targets, the likelihood functions and the spontaneous birth measures are time ho-
mogeneous, that is we have that En = E, EY

n = EY , Mn = M , gn(x, y) = g(x, y) and
µn+1 = µ. Without further mention, we suppose that r(1− d) < 1, µ(1) > 0, r > 0, and for
any y ∈ EY we have

0 ≤ g−(y) := inf
x∈E

g(x, y) ≤ g+(y) := sup
x∈E

g(x, y) <∞

Given a mapping θ from EY into R, we set Y−(θ) := infn Yn(θ) and Y+(θ) := supn Yn(θ).
We recall from (1.10) that the PDH filter is defined by the measure-valued equation

γn+1 = γnQn+1,γn

with the integral operator

Qn+1,γn(xn, dxn+1) = gn,γn(xn)Mn+1(xn, dxn+1) + γn(1)
−1 µn+1(dxn+1)

with the function gn,γn defined below

gn,γn(x) = r(1− d) + rd

∫
Yn(dy)

g(x, y)

h+ dγn(g(., y))

We also notice that the total mass process and the normalized distribution flow are given
by the following equations

γn+1(1) = Φ1
n+1,ηn(γn(1))

= γn(1) r(1− d) +

∫
Yn(dy) wγn(1)(ηn, y) + µ(1)

ηn+1(1) = Φ2
n+1,γn(1)

(ηn)

∝ γn(1) r(1− d) ηnM +

∫
Yn(dy) wγn(1)(ηn, y) Ψg(.,y)(ηn)M + µ(1) µ

with the probability measure µ and weight functions w defined below

µ(dx) = µ(dx)/µ(1) and wu(η, y) := r

(
1− h

h+ duη(g(., y))

)
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For null clutter parameter h = 0, we already observe that the total mass transformation
Φ1
n+1,ηn doesn’t depend on the flow of probability measures ηn and it is simply given by

Φ1
n+1,ηn(γn(1)) = γn(1) r(1− d) + r Yn(1) + µ(1)

In this particular situation, we have

γNn (1) = γn(1) = (r(1− d))nγ0(1) +
∑

0≤k<n

(r(1− d))n−1−k(r Yk(1) + µ(1))

Now, we easily show that the pair of conditions (3.2) and (3.4) are satisfied with the param-
eters a1p,n = (r(1− d))n−p and τ1n = 0. In more general situations, the total mass process is
not explicitly known. Some useful estimates are provided by the following lemma.

Lemma 3.10 We assume that the number of observations is uniformly bounded; that is, we
have that Y+(1) <∞. In this situation, the total mass process γn(1) and any approximation
model γNn (1) given by the recursion (1.4) (with the initial condition γN0 (1) = γ0(1)) take
values in a sequence of compact sets In ⊂ [m−,m+] with

m− :=
µ(1)

1− r(1− d)

(
1 + rd Y−

(
g−

h+ dµ(1)g−

))
and m+ := γ0(1) +

rY+(1) + µ(1)

1− r(1− d)

Proof:
Using the fact that γn(1) ≥ µ(1) we prove that

r

(
1− h

h+ dµ(1) g−(y)

)
≤ wγn(1)(ηn, y) ≤ r

from which we conclude that

γn(1) r(1− d) + r Yh,n(1) + µ(1) ≤ Φ1
n+1,ηn(γn(1)) ≤ γn(1) r(1− d) + r Yn(1) + µ(1)

with the random measures

Yh,n(dy) := Yn(dy)
dµ(1) g−(y)

h+ dµ(1) g−(y)

For any sequence of probability measures ν := (νn)n≥0 ∈ P(E)N, and any starting mass
u ∈ [0,∞[ one conclude that

(r(1− d))n u+
rY−

h (1) + µ(1)

1− r(1− d)
≤ Φ1

0,n,ν(u) ≤ (r(1− d))n u+
rY+(1) + µ(1)

1− r(1− d)

This implies that γn(1), γ
N
n (1) ∈ In ⊂ [m−,m+] with

m− :=
rY−

h (1) + µ(1)

1− r(1− d)
=

µ(1)

1− r(1− d)

(
1 + rd Y−

(
g−

h+ dµ(1)g−

))

The end of the proof of the lemma is now completed.

We are now in position to state the main result of this section.
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Theorem 3.11 We assume that the number of observations is uniformly bounded; that is,
we have that Y+(1) <∞. In this situation, the condition (Lip(Φ)) is met with the Lipschitz
constants aip,n ≤ ∏p≤k<n a

i
k,k+1, with i = 1, 2, and the sequence of parameters

(
ain,n+1

)
n≥0

,

i = 1, 2, defined below

a1n,n+1 ≤ r(1− d) + rdh Yn

(
g+

[h+ dm−g−]2

)

and

a2n,n+1 ≤ m+
β(M)

[
(1− d) + d Yn

(
g+

h+dm+g+
g+

g−

)]
+ hdYn

(
g+−g−

(h+dm−g−)2

)

(1− d) m− + dm−Yn

(
g−

h+dm−g−

)
+ µ(1)/r

In addition, condition (Cont(Φ)) is met with the sequence of parameters

τ1n+1 ≤ rdhm+ Yn

(
g+ − g−

[h+ dm−g−]2

)
τ2n+1 ≤

(1− d) + hd Yn

(
g+

(h+dm−g−)2

)

(1− d) m− + dm−Yn

(
g−

h+dm−g−

)
+ µ(1)/r

The proof of theorem 3.11 is postponed to section 5.4.

Corollary 3.12 We assume that Y+ (g+/g−) and Y+
(
g+/(g−)2

)
< ∞. In this situation,

there exists some parameters 0 < κ0 ≤ 1, κ1 < ∞, and κ2 > 0 such that for any d ≥ κ0,
µ(1) ≥ κ1, and h ≤ κ2, the semigroups Φ1

p,n,ν and Φ2
p,n,m satisfy the pair of conditions

(Lip(Φ)) and (Cont(Φ)) with some parameters (aip,n, τ
i
n)i=1,2,p≤n, satisfying the assumptions

of lemma 3.4. In particular, for any N -approximation models (γNn (1), ηNn ) of the PHD
equation (γn(1), ηn) satisfying condition (1.6), the Lr-mean error estimates presented in
(1.16) are uniform w.r.t. the time parameter

sup
n≥0

E

(∣∣V γ,N
n (1)

∣∣r
) 1

r ≤ ar c
1,2/(1 − e−λ) and sup

n≥0
E

(∣∣V η,N
n (f)

∣∣r
) 1

r ≤ ar c
2,2/(1− e−λ)

with the parameters (c1,2, c2,2, λ) defined in lemma 3.4, and some finite constants ar < ∞
whose values only depend on r.

Proof:
There is no loss of generality to assume that r(1−d) < 1/2 ≤ d and µ(1) ≥ 1 ≥ h. Recalling
that m− ≥ µ(1), one readily proves that

m+

µ(1)
=
γ0(1)

µ(1)
+

1

1− r(1− d)

(
1 +

r

µ(1)
Y+(1)

)
≤ 2 + γ0(1) + 2rY+(1) := ρ

If we set δ(g) := ρ ∨ Y+
(
g+

g−

)
∨ Y+

(
g+

(g−)2

)
, then we find the rather crude estimates

a1n,n+1/r ≤ (1− d) +
2h

µ(1)2
δ(g) and a2n,n+1/r ≤

[
β(M)(1 − d) +

2h+ β(M)

µ(1)

]
δ(g)

as well as

τ1n+1/r ≤
2h

µ(1)
δ(g)2 and τ2n+1/r ≤

1

µ(1)

[
(1− d) +

2h

µ(1)2
δ(g)

]
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from which we find that

τ1τ2 ≤ 2hr2

µ(1)2

[
(1 − d) +

2h

µ(1)2
δ(g)

]
δ(g)2 (3.17)

Thus, there exists some 0 < κ0 ≤ 1 and some κ1 < ∞ so that for any d ≥ κ0 and any
µ(1) ≥ κ1 we have

a1n,n+1 ≤ r

[
(1− d) +

2

µ(1)2

]
δ(g) := e−λ1 < 1

a2n,n+1 ≤ r

[
(1− d) +

3

µ(1)

]
δ(g) := e−λ2 < 1 with 0 < λ2 < λ1

Finally, using (3.17) we find some κ2 > 0 such that for any h ≤ κ2, we have that τ1τ2 ≤(
1− e−λ2

) (
e−λ2 − e−λ1

)
. The end of the proof is now a direct consequence of lemma 3.4.

This ends the proof of the corollary.

4 Stochastic particle approximations

4.1 Mean field interacting particle systems

4.1.1 Description of the models

The mean field type interacting particle system associated with the equation (1.2) relies on
the fact that the one step mappings Γ2

n+1 can be rewritten in the following form

Γ2
n+1(γn(1), ηn) = ηnKn+1,γn with γn = γn(1) × ηn (4.1)

for some collection of Markov kernels Kn+1,γ indexed by the time parameter n and the set
of measures γ ∈ M+(En). We mention that the choice of the Markov transitions Kn,γ is not
unique. In the literature on mean field particle models, Kn,γ are called a choice of McKean
transitions. Some McKean interpretation models of the Bernoulli and the PHD filter models
(1.8 ) and (1.10) are discussed in section 2.2 (see for instance (2.10)) and in section 2.1 (see
for instance 2.2)

These models provide a natural interpretation of the distribution laws ηn as the laws
of a non linear Markov chain Xn whose elementary transitions Xn  Xn+1 depends on
the distribution ηn = Law(Xn), as well as on the current mass process γn(1). In contrast
to traditional McKean model, the dependency on the mass process induce a dependency
of all the flow of measures ηp, for 0 ≤ p ≤ n. For a thorough description of these discrete
generation and non linear McKean type models, we refer the reader to [5].

In further developments of the article, we always assume that the mappings

(
m,xn,

(
xi
)
1≤i≤N

)
7→ Kn+1,m

∑N
j=1 δxj

(xn, An+1) and Gn+1,m
∑N

j=1 δxj
(xn)

are pointwise known, and of course measurable w.r.t. the corresponding product sigma
fields, for any n ≥ 0, N ≥ 1, An+1 ∈ En+1, and any xn ∈ En. In this situation, the mean
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field particle interpretation of this nonlinear measure-valued model is an EN
n -valued Markov

chain ξ
(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

, with elementary transitions defined as

γNn+1(1) = γNn (1) ηNn (Gn,γN
n
) (4.2)

P

(
ξ
(N)
n+1 ∈ dx

∣∣∣ F (N)
n

)
=

N∏

i=1

Kn+1,γN
n
(ξ(N,i)

n , dxi) (4.3)

with the pair of occupation measures
(
γNn , η

N
n

)
defined below

ηNn :=
1

N

N∑

j=1

δ
ξ
(N,j)
n

and γNn (dx) := γNn (1) ηNn (dx)

In the above displayed formula, FN
n stands for the σ-field generated by the random sequence

(ξ
(N)
p )0≤p≤n, and dx = dx1 × . . . × dxN stands for an infinitesimal neighborhood of a point

x = (x1, . . . , xN ) ∈ EN
n . The initial system ξ

(N)
0 consists of N independent and identically

distributed random variables with common law η0. As usual, to simplify the presentation,
when there is no possible confusion we suppress the parameter N , so that we write ξn and

ξin instead of ξ
(N)
n and ξ

(N,i)
n .

4.1.2 Convergence analysis

The rationale behind the mean field particle model described in (4.3) is that ηNn+1 is the em-
pirical measure associated withN independent variables with distributionsKn+1,γN

n

(
ξin, dx

)
,

so as long as γNn is a good approximation of γn then ηNn+1 should be a good approximation
of ηn+1. Roughly speaking, this induction argument shows that ηNn tends to ηn, as the
population size N tends to infinity.

These stochastic particle algorithms can be thought of in various ways: From the physical
view point, they can be seen as microscopic particle interpretations of physical nonlinear
measure-valued equations. From the pure mathematical point of view, they can also be
interpreted as natural stochastic linearizations of nonlinear evolution semigroups. From the
probabilistic point of view, they can be interpreted as a interacting recycling acceptance-
rejection sampling techniques. In this case, they can be seen as a sequential and interacting
importance sampling technique.

By construction, the local fluctuation random fields (WN
n )n≥0 defined in (1.5) can be

rewritten as follows

ηNn = ηNn−1Kn,γN
n−1

+
1√
N

WN
n

Using Khintchine’s inequality, we can check that (1.6) is met for any r ≥ 1 and any fn ∈
Osc1(En), with the collection of universal constants given below

a2r2r ≤ (2r)! 2−r/r! and a2r+1
2r+1 ≤ (2r + 1)! 2−r/r!

We end this section with a brief discussion on the PHD equation presented in (1.10).
This model combines in a single step the traditional updating and a prediction filtering
transition. This combination allows us to reduce the fluctuations of the local sampling
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errors and their propagations w.r.t. the time parameter. Since these updating-prediction
models are often used in the literature of multiple target tracking, we provide below a short
summary. If we set

ĝcn,γ(., y) =





(1− dn) if y = c
dngn(., yn)

hn(y) + γ(dngn(., y))
if y 6= c

then
γn+1 = γ̂nQn+1 + µn+1 with Qn+1(f) := rn Mn+1(f)

with the updated measures defined below

γ̂n(f) := γn(g̃
c
n,γnf) with g̃cn,γn =

∫
Yc
n(dy) ĝ

c
n,γn(., y)

Notice that

γ̂n(1) = γn(g̃
c
n,γnf) and η̂n(dx) := γ̂n(dx)/γ̂n(1) = Ψg̃cγn,n

(ηn)(dx)

from which we find the recursive formulae

(
γn(1)
ηn

)
updating

−−−−−−−−−−−−−→
(
γ̂n(1)
η̂n

)
prediction

−−−−−−−−−−−−−→
(
γn+1(1)
ηn+1

)

with the prediction transition described below

γn+1(1) = γ̂n(rn) + µn+1(1) and ηn+1 = Ψrn (η̂n)M
′
n+1,γ̂n

In the above displayed formula, M ′
n+1,γ̂n

is the Markov transition defined by

M ′
n+1,γ̂n(x, .) = α′

n(γ̂n) Mn+1(x, .) +
(
1− α′

n(γ̂n)
)
µn+1

with the collection of [0, 1]-valued parameters α′
n(γ̂n) = γ̂n(rn)/(γ̂n(rn) + µn+1(1)). It

should be clear that the updating and the prediction transitions can be approximated using
a genetic type selection and mutation transition. Each of these sampling transitions intro-
duces a separate local sampling fluctuation error. The stochastic analysis of the correspond-
ing mean field particle interpretations can be developed using the same line of arguments
as those used for the particle model discussed above.

4.2 Interacting particle association systems

4.2.1 Description of the models

We let (An)n≥0 be a sequence of finite sets equipped with some finite positive measures
(νn)n≥0. We further assume that the initial distribution γ0 and the integral operators
Qn+1,γn in (1.1) have the following form

γ0 =

∫
ν0(da) η

(a)
0 and Qn+1,γn =

∫
νn+1(da) Q

(a)
n+1,γn
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In the above display η
(a)
0 stands for a collection of measures on E0, indexed by the parameter

a ∈ A0, and Q
(a)
n+1,γn

is a collection of integral operators indexed by the parameter a ∈ An+1.
In this situation, we observe that

γ0(1) = ν0(1) and η0 =

∫
A0(da) η

(a)
0 with A0(da) := ν0(da)/ν0(1)

We also assume that the following property is met

G(a)
n,γ := Q

(a)
n+1,γ(1) ∝ G(a)

n and Q
(a)
n+1,γ(f)/Q

(a)
n+1,γ(1) :=M

(a)
n+1(f) (4.4)

for some function G
(a)
n on En, and some Markov transitions M

(a)
n+1 from En into En+1 whose

values do not depend on the measures γ. For clarity of presentation, sometimes we write

Ψ
(a)
Gn

instead of Ψ
G

(a)
n
.

Definition 4.1 We consider the collection of probability measures η
(an)
n ∈ P(En), indexed

by sequences of parameters

an = (a0, . . . , an) ∈ A[0,n] := (A0 × . . .×An)

and defined by the following equations

η(an)n =
(
Φ(an)
n ◦ . . . ◦ Φ(a1)

1

)(
η
(a0)
0

)
(4.5)

with the mappings Φ
(a)
n : P(En−1) → P(En) indexed by a ∈ An and defined by the updating-

prediction transformation

Φ(a)
n (η) = Ψ

(a)
Gn−1

(η)M (a)
n

We illustrate these abstract conditions in the context of the multiple target tracking equation
presented in (1.10). In this situation, it is convenient to add a pair of virtual observation
states c, c′ to EY

n . Using this notation, the above conditions are satisfied with the finite sets
An+1 and their counting measures νn+1 defined below

An+1 =
{
Y i
n, 1 ≤ i ≤ NY

n } ∪ {c, c′
}

νn+1 = Yn + δc + δc′ ∈ M(An+1)

Using (1.10) and (1.12), we check that (4.4) is met with the couple of potential functions
and Markov transitions defined by

(G(yn)
n ,M

(yn)
n+1 ) =





(rndngn(., yn),Mn+1) for yn 6∈ {c, c′}
(rn(1− dn),Mn+1) for yn = c(
1, µn+1

)
for yn = c′

In this case, we observe that

Q
(yn)
n+1,γn

(xn, .) = G(yn)
n,γn(xn) M

(yn)
n+1 (xn, .)

with the potential function G
(yn)
n,γn defined below

G(yn)
n,γn/G

(yn)
n =





[hn(yn) + γn(dngn(., yn))]
−1 for yn 6∈ {c, c′}

1 for yn = c
µn+1(1)/γn(1) for yn = c′

(4.6)

Under our assumptions, using (1.2), we have the following result.

RR n° 7376



Stability and Approximation of Branching Distribution Flows 35

Proposition 4.2 The solution the equation (1.2) has the following form

ηn =

∫
An(da) η

(a)
n

with a total mass process γn(1) and the association measures An ∈ P(A[0,n]) defined by the
following recursive equations

γn+1(1) = γn(1) ηn(Gn,γn) and An+1 = Ωn+1 (γn(1), An)

With the mapping

Ωn+1 : (m,A) ∈
(
]0,∞[×P(A[0,n])

)
7→ Ωn+1(m,A) ∈ P(A[0,n+1])

defined by the following formula

Ωn+1 (m,A) (d(a, b)) ∝ A(da) νn+1(db) η
(a)
n

(
G

(b)

n,m
∫
A(da) η

(a)
n

)
(4.7)

Proof:
The proof of the above assertion is simply based on the fact that

ηn+1 ∝
∫
νn+1(db) ηnQ

(b)
n+1,γn

=

∫
An(da) νn+1(db) η

(a)
n Q

(b)
n+1,γn

=

∫
An(da) νn+1(db) η

(a)
n

(
G(b)

n,γn

)
η
(a,b)
n+1

This clearly implies that

Γ2
n

(
m,

∫
A(da) η

(a)
n−1)

)
=

∫
Ωn (m,A) (d(a, b)) η

(a,b)
n

This ends the proof of the proposition.

By construction, we notice that for any discrete measure A ∈ P(A[0,n−1]), and any

collection of measures η(a) ∈ P(En−1), with a ∈ A[0,n−1] we have the formula

Γ2
n

(
m,

∫
A(da) η(a))

)
=

∫
Ωn (m,A) (d(a, b)) Φ(b)

n

(
η(a)

)

4.2.2 Particle approximation models

To get some feasible solution, we further assume that η
(a)
n

(
G

(b)
n,γn

)
are explicitly known for

any sequence of parameters (a, b) ∈
(
A[0,n] ×An+1

)
. This rather strong condition is satisfied

for the multiple target tracking model discussed above as long as the quantities

η(a0,y0,...,yn−1)
n (rndngn(., yn)) η(a0,y0,...,yn−1)

n (rn(1− dn)) η(a0,y0,...,yn−1)
n (dngn(., yn))

are explicitly known. This condition is clearly met for linear gaussian target evolution and
observation sensors as long as the survival and detection probabilities sn and dn are state in-
dependent, and spontaneous birth µn and spawned targets branching rates bn are Gaussian
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mixtures. In this situation, the collection of measures η
(a0,y0,...,yn−1)
n are gaussian distribu-

tions and the equation (4.5) coincides with the traditional updating-prediction transitions
of the discrete generation Kalman-Bucy filter.

We let AN
0 = 1

N

∑N
i=1 δai0

, be the empirical measure associated with N independent

and identically distributed random variables (ai0)1≤i≤N with common distribution A0. By
construction, we have

ηN0 :=

∫
AN

0 (da) η
(a)
0 = η0 +

1√
N

WN
0

with some local sampling random fields satisfying (1.6). We further assume that γ0(1) is
known and we set γN0 = γ0(1) η

N
0 .

γN1 (1) = γN0 (1) ηN0 (G0,γN
0
) and ηN1 :=

∫
AN

1 (da) η
(a)
1

with the occupation measure AN
1 = 1

N

∑N
i=1 δai1

associated with N conditionally inde-

pendent and identically distributed random variables ai1 := (ai0,1, a
i
1,1) with common law

Ω1

(
γN0 (1), AN

0

)
. By construction, we also have

ηN1 :=

∫
Ω1

(
γN0 (1), AN

0

)
(da) η

(a)
1 +

1√
N

WN
1 = Γ2

1

(
γN0 (1), ηN0

)
+

1√
N

WN
1

with some local sampling random fields satisfying (1.6). Iterating this procedure, we define
by induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) η
N
n−1(Gn−1,γN

n−1
) and ηNn :=

∫
AN

n (da) η(a)n

with the occupation measure AN
n = 1

N

∑N
i=1 δain associated withN conditionally independent

and identically distributed random variables ain := (ai0,n, a
i
1,n, . . . , a

i
n,n) with common law

Ωn

(
γNn−1(1), A

N
n−1

)
. Arguing as above, we find that

ηNn =

∫
Ωn

(
γNn−1(1), A

N
n−1

)
(da) η(a)n +

1√
N

WN
n = Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N

WN
n

with some local sampling random fields satisfying (1.6).

4.2.3 Convergence analysis

The main objective of this section is to show that N -particle occupation measures AN
n

converge in a sense to be given, as N tends to ∞, to the association probability measures
An. To this end we observe that the one step mapping Ωn+1 introduced in (4.7) can be
rewritten in the following form

Ωn+1 (m,A) (F ) =
AQn+1,mA(F )

AQn+1,mA(1)

with the collection of integral operators Qn+1,mA from A[0,n] into A[0,n+1] defined below

Qn+1,B(a, d(a
′, b)) := δa(da

′) νn+1(db) η
(a′)
n

(
G(b)
n,B

)
where G(b)

n,B := G
(b)

n,
∫
B(da) η

(a)
n
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with B = mA. In the above display d(a′, b) = da′ × db stands for an infinitesimal neigh-
borhood of the point (a′, b) ∈ A[0,n+1], with a = (a′0, . . . , a

′
n) ∈ A[0,n] and b ∈ An+1, and

a = (a0, . . . , an) ∈ A[0,n]. It is important to point out that

Bn := γn(1)×An =⇒ Bn+1 = BnQn+1,Bn

Notice that the flow of measures (Bn)n≥0 satisfies the same type of equation as in (1.1),
with the a total mass evolution of the same form as (1.3):

Bn+1(1) = Bn(1) An (Gn,Bn) with Gn,mA :=

∫
νn+1(db) G(b)

n,mA

Qn+1,Bn(F )(a) =

∫
νn+1(db) η

(a)
n

(
G(b)
n,Bn

)
F (a, b)

[
Qn+1,B(F )−Qn+1,B′(F )

]
(a) =

∫
νn+1(db)

[
η(a)n

(
G(b)
n,B

)
− η(a)n

(
G(b)
n,B′

)]
F (a, b)

If we set B = mA and B′ = m′A′ then condition (H ′
2) is met as long as

∣∣∣η(a)n

(
G(b)
n,B

)
− η(a)n

(
G(b)
n,B′

)∣∣∣ ≤ c(n) |m−m′|+
∫

|[A−A′](ϕ)| Σ(b)
n,B′(dϕ)

for some collection of bounded measures Σ
(b)
n,B′ on B(An) such that

∫
osc(ϕ) Σ

(b)
n,B′ ≤

δ
(
Σ
(b)
n

)
, for some finite constant δ

(
Σ
(b)
n

)
< ∞, whose values do dot depend on the pa-

rameters (m,A) ∈ (In × P(An)). Under the assumptions (4.4), we have

G(b)
n,B(x) = α(b)

n (B) G(b)
n (x)

for some collection of parameters α
(b)
n (B) satisfying

∣∣∣α(b)
n (B)− α(b)

n (B′)
∣∣∣ ≤ c(n) |m−m′|+

∫
|[A−A′](ϕ)| Σ(b)

n,B′(dϕ)

This condition is clearly satisfied for the PHD model discussed in (4.6), as long as the
functions hn(yn) + dngn(., yn) are uniformly bounded from above and below.

For instance, for b = yn 6∈ {c, c′} we have

α(b)
n (B) =

[
hn(b) +

∫
B(da) η(a)n (dngn(., b))

]−1

In this case, we can check that
∣∣∣α(b)

n (B)− α(b)
n (B′)

∣∣∣ ≤ c(n)
∣∣∣[B −B′](ϕ(b)

n )
∣∣∣ with ϕ(b)

n (a) := η(a)n (dngn(., b))

In the same way, we show that the condition (H1) is also met for the PHD model. This, by
construction of AN

n we find that

AN
n = Ωn

(
γNn−1(1), A

N
n−1

)
+

1√
N

WN
n
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with some local sampling random fields satisfying (1.6). Notice that

Ωn+1 (m,A) = ΨHn,mA
(A)Mn+1,mA(a, d(a

′, b))

with the collection of potential functions

Hn,mA(a) := Qn+1,mA(1)(a) = η(a)n (Gn,mA)

and the Markov transitions

Mn+1,mA(a, d(a
′, b)) :=

Qn+1,mA(a, d(a
′, b))

Qn+1,mA(1)(a)
= δa(da

′)
νn+1(db) η

(a′)
n

(
G(b)
n,mA

)

∫
νn+1(db′) η

(a′)
n

(
G(b′)
n,mA

)

4.3 Mixed particle association models

We consider the association mapping

Ωn+1 : (m,A, η) ∈
(
]0,∞[×A[0,n] × P(En)

A[0,n]
)
7→ Ωn+1(m,A, η) ∈ P(A[0,n+1])

defined for any (m,A) ∈
(
]0,∞[×A[0,n]

)
and any mapping η : a ∈ Supp(A) 7→ η(a) ∈ Pa(En)

by

Ωn+1 (m,A, η) (d(a, b)) ∝ A(da) νn+1(db) η
(a)
(
G

(b)

n,m
∫
A(da) η(a)

)

By construction, for any discrete measure A ∈ P(A[0,n−1]), and any mapping a ∈ Supp(A) 7→
η(a) ∈ P(En−1), we have the formula

Γ2
n

(
m,

∫
A(da) η(a))

)
=

∫
Ωn

(
m,A, η(.)

)
(d(a, b)) Φ(b)

n

(
η(a)

)

We also mention that the updating-prediction transformation defined in (4.5)

Φ(a)
n (η) = Ψ

(a)
Gn−1

(η)M (a)
n = ηK(a)

n,η with K(a)
n,η = S(a)

n−1,ηM
(a)
n (4.8)

In the above displayed formula S(a)
n,η stands for some updating Markov transition from En−1

into itself satisfying the compatibility condition ηS(a)
n−1,η = Ψ

(a)
Gn−1

(η).

We let AN
0 = 1

N

∑N
i=1 δai0 , be the empirical measure associated with N independent and

identically distributed random variables (ai0)1≤i≤N with common distribution A0. For any
a ∈ A0, we let

ηN0 :=

∫
AN

0 (da) η
(a,N ′)
0 and η

(a,N ′)
0 =

1

N ′

N ′∑

i=1

δ
ξ
[a,j]
0

with the empirical measure η
(a,N ′)
0 associated with N ′ random variables ξ

[a]
0 =

(
ξ
[a,j]
0

)
1≤j≤N ′

with common law η
(a)
0 . We further assume that γ0(1) is known and set

γN0 := γ0(1) η
N
0 and γN1 (1) := γN0 (1) ηN0 (G0,γN

0
)
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It is readily checked that the fluctuation random fields given below

W(a,N ′)
0 =

√
N ′

(
η
(a,N ′)
0 − η

(a)
0

)

satisfies (1.6), with N = N ′, for any given a ∈ A0. Using the fact that
∫
AN

0 (da) η
(a,N ′)
0 =

∫
AN

0 (da) η
(a)
0 +

1√
N ′

∫
AN

0 (da) W(a,N ′)
0

we conclude that

ηN0 := η0 +
1√
N

WN
0

with some local sampling random fields WN
0 satisfying the same estimates as in (1.6) by

replacing 1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
.

Using (4.8), for any a1 = (a0, a1) we find that

Φ
(a1)
1

(
η
(a0,N ′)
0

)
= η

(a0,N ′)
0 K(a1)

n,η
(a0,N

′)
0

We let AN
1 = 1

N

∑N
i=1 δai1

be the occupation measure associated with N conditionally inde-

pendent and identically distributed random variables ai1 := (ai0,1, a
i
1,1) with common law

Ω1

(
γN0 (1), AN

0 , η
(.,N ′)
0

)

In the above displayed formula η
(.,N ′)
0 stands for the mapping a0 ∈ A0 7→ η

(a0,N ′)
0 ∈ P(E0).

We consider a sequence of conditionally independent random variables ξ
[a0,a1,j]
1 with

distribution K(a1)

n,η
(a0,N

′)
0

(
ξ
[a0,j]
0 , .

)
, with 1 ≤ j ≤ N ′, and we set

η
((a0,a1),N ′)
1 =

1

N ′

N ′∑

i=1

δ
ξ
[(a0,a1),j]
1

and ηN1 :=

∫
AN

1 (da) η
(a,N ′)
1

Arguing as before, for any given a1 := (a0, a1) ∈ Supp(AN
1 ), the sequence of random fields

W(a1N ′)
1 :=

√
N
(
η
((a0,a1),N ′)
1 − Φ

(a1)
1

(
η
(a0,N ′)
0

))

satisfies (1.6), with N = N ′. Thus, we conclude that

ηN1 =

∫
Ω1

(
γN0 (1), AN

0 , η
(.,N ′)
0

)
(d(a0, a1)) Φ

(a1)
1

(
η
(a0,N ′)
0

)
+

1√
N

WN
1

= Γ2
1

(
γN0 (1), ηN0

)
+

1√
N

WN
1

with some local sampling random fields WN
1 satisfying the same estimates as in (1.6) by

replacing 1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
. Iterating this procedure, we define by

induction a sequence of N -particle approximation measures

γNn (1) = γNn−1(1) η
N
n−1(Gn−1,γN

n−1
) and ηNn :=

∫
AN

n (da) η(a,N
′)

n
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with the occupation measure AN
n = 1

N

∑N
i=1 δain associated withN conditionally independent

and identically distributed random variables ain := (ai0,n, a
i
1,n, . . . , a

i
n,n) with common law

Ωn

(
γNn−1(1), A

N
n−1, η

(.,N ′)
n−1

)
. Arguing as above, we find that

ηNn =

∫
Ωn

(
γNn−1(1), A

N
n−1, η

(.,N ′)
n−1

)
(d(a, b)) Φ(b)

n

(
η
(a,N ′)
n−1

)
= Γ2

n

(
γNn−1(1), η

N
n−1

)
+

1√
N

WN
n

with some local sampling random fields satisfying the same estimates as in (1.6) by replacing

1/
√
N by the sum

(
1/
√
N + 1/

√
N ′
)
. As before, the N -particle occupation measures AN

n

converge as N tends to ∞ to the association probability measures An.

5 Appendix

5.1 Proof of corollary 3.6

For constant mappings sn = µn+1(1), the mappings Φ1
n+1,νn and Φ2

n+1,mn
are given by

Φ1
n+1,νn(u) = sn and Φ2

n+1,mn
(η) = Ψ

g
(s)
n
(η)M

(s)
n+1

with the likelihood function g
(s)
n and the Markov transitions M

(s)
n+1 defined in (2.7). Firstly,

we observe that rn(sn) := supx,x′∈En
g
(s)
n (x)/g

(s)
n (x′). We also notice that the second compo-

nent mapping Φ2
n+1,mn

does not depends on the parameter mn, and it induces a Feynman-
Kac semigroup of the same form as the one discussed in section 3.2.

Under the premise of the proposition, the semigroup of associated with the Markov
transitions Mn satisfies the mixing property stated in the l.h.s. of (3.11) for some integer
m ≥ 1 and some parameter ǫp(m) ∈]0, 1]. In this situation, we also have that

M
(s)
p,p+m(x, .) ≥ ǫ(s)p (m) M

(s)
p,p+m(x

′, .)

with some positive parameter

ǫ(s)p (m) ≥ ǫp(m)/
∏

p≤k<p+m

rk(sk)rk(1) and rn(sn) :=
sng

+
n + (1− sn)

sng
−
n + (1− sn)

(≤ rn(1))

To prove this claim, firstly we observe that M
(s)
p,p+m(x, .) ≪M

(s)−
p,p+m(x, .) and

∏

p≤k<p+m

rk(sk)
−1 ≤ dM

(s)
p,p+m(x, .)/dM

(s)−
p,p+m(x, .) ≤

∏

p≤k<p+m

rk(1)

with the semigroup M
(s)−
p,n associated with the Markov transition

M
(s)−
p,p+1(x, .) = αp+1 Mp+1(x, .) + (1− αk+1) µk+1 with αp+1 :=

skg
−
k

skg
−
k + (1− sk)

Using the geometric representation

M (s)−
p,n (x, .) =


 ∏

p<k≤n

αk


Mp,n(x, .) +

∑

p<k≤n

(1− αk)


 ∏

k<l≤n

αl


 µkMk,n
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it can be verified that

M
(s)−
p,p+m(x, .) ≥ ǫp(m) M

(s)−
p,p+m(x′, .) ≥ ǫp(m)


 ∏

p≤k<p+m

g−k /g
+
k


 M

(s)
p,p+m(x

′, .)

from which we conclude that

M
(s)
p,p+m(x, .) ≥ ǫ(s)p (m) M

(s)
p,p+m(x

′, .) with ǫ(s)p (m) ≥ ǫp(m)/
∏

p≤k<p+m

rk(sk)rk(1)

We end the proof of the proposition combing the proposition 3.5 with the couple of estimates
presented in (3.12) and (3.13). This ends the proof of the corollary.

5.2 Proof of theorem 3.7

The formulae presented in (2.6) can be rewritten in terms of matrix operations as follows

[γn+1(1) , 1− γn+1(1)] = [γ̂n(1) , 1− γ̂n(1)]

[
Ψgn(ηn)(sn) 1−Ψgn(ηn)(sn)
µn+1(1) 1− µn+1(1)

]

and

[γ̂n(1) , 1− γ̂n(1)] =

[γn(1) , 1− γn(1)]

[
ηn(gn) 0

0 1

]

[γn(1) , 1− γn(1)]

[
ηn(gn) 0

0 1

] [
1
1

]

With a slight abuse of notation, we set

ϑn := [γn(1) , 1− γn(1)] ϑ̂n := [γ̂n(1) , 1− γ̂n(1)] and 1 =

[
1
1

]

We also denote by Mn+1,ηn and Dn,ηn the stochastic and the diagonal matrices defined by

Mn+1,ηn :=

[
Ψgn(ηn)(sn) 1−Ψgn(ηn)(sn)
µn+1(1) 1− µn+1(1)

]
and Dn,ηn :=

[
ηn(gn) 0

0 1

]
(5.1)

In this notation, the above recursion can be rewritten in a more compact form

ϑn+1 = ϑ̂n Mn+1,ηn and ϑ̂n =
ϑn Dn,ηn

ϑnDn,ηn1
=⇒ ϑn+1 =

ϑn Qn+1,ηn

ϑnQn+1,ηn1

with the product of matrices Qn+1,ηn = Dn,ηnMn+1,ηn .

∀u ∈ Ip(⊂ [0, 1])
[
Φ1
p,n,ν(u), 1− Φ1

p,n,ν(u)
]
=

[u, 1− u] Qp,n,ν

[u, 1 − u] Qp,n,ν(1)

with the matrix semigroup

Qp,n,ν = Qp+1,νpQp+2,νp+1 . . .Qn,νn−1
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These semigroups are again of the same form as the Feynman-Kac models discussed in
section 3.2 with a two point state space. When µn+1(1) ∈]0, 1[ and 0 < s−n ≤ s+n < 1, we
have for any n ≥ 0 and any i, i′, j ∈ {1, 2}

Mn+1,νn(i, j) ≥ ǫn Mn+1,νn(i
′, j) and sup

i,i′∈{1,2}

Qn+1,νn(1)(i)

Qn+1,νn(1)(i
′)

≤ δ′n(g)

The first assertion is a direct consequence of the proposition 3.5 with the couple of estimates
presented in (3.12) and (3.13).

Using (2.3), we find that Φ2
n+1,mn

induces a Feynman-Kac models of the same form as
the one discussed in section 3.2. More precisely, we have that

Φ2
n+1,mn

(η) = ΨĜn,mn
(η)M̂n+1,mn

with the potential functions Gn,mn and the Markov transitions M̂n+1,mn defined in (2.4)
and (2.5). Notice that

sup
x,x′∈En

Ĝn,mn(x)

Ĝn,mn(x
′)

≤ δn(sg)

and for any x ∈ En and any n ≥ 0

δn(sg)
−1 M̂−

n+1,mn
(x, .) ≤ M̂n+1,mn(x, .) ≤ δn(sg) M̂

−
n+1,mn

(x, .)

with the Markov transitions M̂−
n+1,mn

defined as M̂−
n+1,mn

by replacing the functions (sn, gn)
by their lower bounds (s−n , g

−
n ). To prove this claim, we use the fact that for any positive

function f we have

dM̂n+1,mn(f)

dM̂−
n+1,mn

(f)
=
mng

−
n s

−
n + (1−mn)µn+1(1)

mngnsn + (1−mn)µn+1(1)
×mngnsnMn+1(f) + (1−mn)µn+1(1)µn+1(f)

mng
−
n s

−
n + (1−mn)µn+1(1)µn+1(f)

and the two series of inequalities

δn(sg)
−1 ≤ mng

−
n s

−
n + (1−mn)µn+1(1)

mngnsn + (1−mn)µn+1(1)
≤ 1

and

1 ≤ mngnsnMn+1(f) + (1−mn)µn+1(1)µn+1(f)

mng
−
n s

−
n + (1−mn)µn+1(1)µn+1(f)

≤ δn(sg)

With a slight abuse of notation, we write M̂p,n, and respectively M̂−
p,n, the semigroup

associated with the Markov transitions M̂n+1,mn , and resp. M̂−
n+1,mn

. Using the same
argument as in the proof of corollary 3.6 it follows that

M̂−
p,p+m(x, .) ≥ ǫp(m) M̂−

p,p+m(x
′, .)

from which we conclude that

M̂p,p+m(x, .) ≥ ǫ̂p(m) M̂p,p+m(x
′, .) with ǫ̂p(m) ≥ ǫp(m)

∏

0≤k<m

δp+k(sg)
−2

RR n° 7376



Stability and Approximation of Branching Distribution Flows 43

using proposition 3.5 with the couple of estimates presented in (3.12) and (3.13), we check
that (3.3) is satisfied with

a2p,n ≤ 2 ρp(m)

⌊n/m⌋−1∏

k=0

(
1− ǫ

(m)
p+km

)

and some parameters

ǫ(m)
p := ǫ̂p(m)2

∏

0<k<m

δp+k(sg)
−1 ≥ ǫp(m)2 δp(sg)

−4
∏

0<k<m

δp+k(sg)
−5

and
ρp(m) := ǫ̂p(m)−1

∏

0≤k<m

δp+k(sg) ≤ ǫp(m)−1
∏

0≤k<m

δp+k(sg)
3

This ends the proof of the first assertion of the theorem. Next, we discuss condition
(Cont(Φ)). We observe that

Φ1
n+1,ν(u) =

u ν(gnsn) + (1− u)µn+1(1)

u ν(gn) + (1− u)

After some manipulations

Φ1
n+1,ν(u)− Φ1

n+1,ν′(u)

= uν′(gn)
uν′(gn)+(1−u) [Ψgn(ν)−Ψgn(ν

′)] (sn)

+ u
uν(gn)+(1−u)

(1−u)
uν′(gn)+(1−u) [Ψgn(ν)(sn)− µn+1(1)] [ν − ν ′] (gn)

Recalling that the mapping θa(x) = ax/(ax + (1 − x)) in increasing on [0, 1] and using the
fact that

Ψgn(ν) = νSn,ν =⇒ Ψgn(ν)−Ψgn(ν
′) =

g+n
ν(gn)

(ν − ν ′)Sn,ν′

with the Markov transition

Sn,ν′(x, dx
′) =

gn(x)

g+n (x)
δx(dx

′) +

(
1− gn(x)

g+n (x)

)
Ψgn(ν

′)(dx′)

we prove
∣∣Ψgn(ν)(sn)−Ψgn(ν

′)(sn)
∣∣ ≤ g+n

g−n

∣∣(ν − ν ′)Sn,ν′(sn)
∣∣ (5.2)

and for any u ∈ In = [m−
n ,m

+
n ]

∣∣∣Φ1
n+1,ν(u)− Φ1

n+1,ν′(u)
∣∣∣

= m+
n g+n

m+
n g+n +(1−m+

n )

g+n
g−n

∣∣(ν − ν ′)Sn,ν′(sn)
∣∣

+ m+
n g+n

m+
n g+n +(1−m+

n )

(1−m−
n )

m−
n g−n +(1−m−

n )
‖sn − µn+1(1)‖ |[ν − ν ′] (gn/g

−
n )|
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This implies that

τ1n+1 ≤ m+
n g

+
n

m+
n g

+
n + (1−m+

n )

g+n
g−n

(s+n − s−n )

+
m+

n g
+
n

m+
n g

+
n + (1−m+

n )

(1−m−
n )

m−
n g

−
n + (1−m−

n )
‖sn − µn+1‖

(
g+n
g−n

− 1

)

≤ g+n
g−n

[
(s+n − s−n ) + ‖sn − µn+1(1)‖

]

Using (2.3) we also find that

Φ2
n+1,m(η)(f) =

mη(sngnMn+1(f)) + (1−m) µn+1(f)

mη(sngn) + (1−m)µn+1(1)

It is also readily check that

[
Φ2
n+1,m(η)− Φ2

n+1,m′(η)
]
(f) =

µn+1(1) η(gnsn)
[
Ψgnsn(η)Mn+1 − µn+1

]
(f) (m−m′)

[mη(sngn) + (1−m)µn+1(1)] [m′η(sngn) + (1−m′)µn+1(1)]

from which we conclude that

τ2n+1 ≤ sup

{
µn+1

s−n g
−
n
,
s+n g

+
n

µn+1(1)

}
≤ δ′n(g) sup

{
µn+1

s−n
,

s+n
µn+1(1)

}

This ends the proof of the theorem.

5.3 Proof of proposition 3.3

The proof of proposition 3.3 is based on the following technical lemma.

Lemma 5.1 We assume that the regularity conditions (Lip(Φ)) and (Cont(Φ)) are satisfied.
In this situation, for any p ≤ n, u, u′ ∈ Ip, η, η

′ ∈ P(Ep) and f ∈ Osc1(En) and any flow of
masses and probability measures m = (mn)n≥0 ∈ ∏n≥0 In and ν := (νn)n≥0 ∈ ∏n≥0P(En)
we have the following estimates

∣∣Φ1
p,n,ν′(u

′)− Φ1
p,n,ν(u)

∣∣ ≤ a1p,n |u− u′|+
∑

p≤q<n

a1q,n

∫ ∣∣[νq − ν ′q](ϕ)
∣∣ Ω1

q+1,ν′q
(dϕ)

∣∣∣Φ2
p,n,m′(η′)(f)− Φ2

p,n,m(η)(f)
∣∣∣ ≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣Ω2

p,n,η′(f, dϕ) +
∑

p≤q<n

a2q,n |mq −m′
q|

with the collection of parameters aip,n, i = 1, 2, defined in (3.6).

Proof:
We use the decomposition

Φ1
p,n,ν′(u

′)− Φ1
p,n,ν(u) = Φ1

p,n,ν(u
′)− Φ1

p,n,ν(u)

+
∑

p<q≤n

[
Φ1
q,n,ν(Φ

1
p,q,ν′(u

′))− Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′))
]

RR n° 7376



Stability and Approximation of Branching Distribution Flows 45

and the fact that

Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′)) = Φ1
q,n,ν

(
Φ1
q−1,q,ν

[
Φ1
p,q−1,ν′(u

′)
])

Φ1
q,n,ν(Φ

1
p,q,ν′(u

′)) = Φ1
q,n,ν

(
Φ1
q−1,q,ν′

[
Φ1
p,q−1,ν′(u

′)
])

and ∣∣Φ1
p,n,ν(u

′)− Φ1
p,n,ν(u)

∣∣ ≤ a1p,n |u− u′|
and ∣∣∣Φ1

q,n,ν(Φ
1
p,q,ν′(u

′))− Φ1
q−1,n,ν(Φ

1
p,q−1,ν′(u

′))
∣∣∣

≤ a1q,n

∣∣∣Φ1
q,νq−1

[
Φ1
p,q−1,ν′(u

′)
]
− Φ1

q,ν′q−1

[
Φ1
p,q−1,ν′(u

′)
]∣∣∣

≤ a1q−1,n

∫ ∣∣[νq−1 − ν ′q−1](ϕ)
∣∣ Ωq,ν′q−1

(dϕ)

to show that

∣∣Φ1
p,n,ν′(u

′)− Φ1
p,n,ν(u)

∣∣ ≤ a1p,n |u− u′|+
∑

p<q≤n

a1q−1,n

∫ ∣∣[νq−1 − ν ′q−1](ϕ)
∣∣ Ω1

q,ν′q−1
(dϕ)

In the same way, we use the decomposition

[
Φ2
p,n,m′(η′)− Φ2

p,n,m(η)
]

=
[
Φ2
p,n,m(η

′)− Φ2
p,n,m(η)

]

+
∑

p<q≤n

[
Φ2
q,n,m(Φ

2
p,q,m′(η′))− Φ2

q−1,n,m(Φ
2
p,q−1,m′(η′))

]

and the fact that

Φ2
q−1,n,m(Φ

2
p,q−1,m′(η′)) = Φ2

q,n,m

(
Φ2
q−1,q,m

[
Φ2
p,q−1,m′(η′)

])

Φ2
q,n,m(Φ2

p,q,m′(η′)) = Φ2
q,n,m

(
Φ2
q−1,q,m′

[
Φ2
p,q−1,m′(η′)

])

and ∣∣Φ2
p,n,m(η

′)(f)− Φ2
p,n,m(η)(f)

∣∣ ≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η′(f, dϕ)

to show that
∣∣∣Φ2

q,n,m(Φ
2
p,q,m′(η′))− Φ2

q−1,n,m(Φ
2
p,q−1,m′(η′))

∣∣∣

≤ a2q,n

∫ ∣∣∣[Φ2
q,mq−1

[
Φ2
p,q−1,m′(η′)

]
− Φ2

q,m′
q−1

[
Φ2
p,q−1,m′(η′)

]
](ϕ)

∣∣∣ Ω2
q,n,Φ2

p,q,m′(η
′)(f, dϕ)

≤ a2q−1,n |mq−1 −m′
q−1|

Using these estimates we conclude that

∣∣[Φ2
p,n,m′(η′)− Φ2

p,n,m(η)
]
(f)
]
≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η(f, dϕ)+
∑

p<q≤n

a2q−1,n |mq−1−m′
q−1|
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This ends the proof of the lemma.

Now we come to the proof of proposition 3.3.
Proof of proposition 3.3:
We fix a parameter p ≥ 0, and we let (mn)n≥p, (m

′
n)n≥p ∈ ∏n≥p In and (νn)n≥p, and

(ν ′n)n≥p ∈
∏

n≥p P(En) be defined by the following recursive formulae

∀q > p m′
q = Φ1

q,ν′q−1
(m′

q−1) and ν ′q = Φ2
q,m′

q−1
(ν ′q−1)

∀q > p mq = Φ1
q,νq−1

(mq−1) and νq = Φ2
q,mq−1

(νq−1)

with the initial condition for q = p

(νp, ν
′
p) = (η, η′) and (mp,m

′
p) = (u, u′)

By construction, we have

ν ′q = Φ2
p,q,m′(η′) and νq = Φ2

p,q,m(η)

as well as
m′

q = Φ1
p,q,ν′(u

′) and mq = Φ1
p,q,ν(u)

In this case, using lemma 5.1 it follows that

∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)
]

≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η′(f, dϕ) +
∑

p≤q<n

a2q,n |Γ1
p,q(m

′, η′)− Γ1
p,q(m, η)|

and
∣∣Γ1

p,n(m
′, η′)− Γ1

p,n(m, η)
∣∣

≤ a1p,n |m−m′|+
∑

p≤q<n

a1q,n

∫ ∣∣[Γ2
p,q(m

′, η′)− Γ2
p,q(m, η)](ϕ)

∣∣ Ω
1
p,q,m′,η′(dϕ)

with the probability measure Ω
1
p,q,m′,η′ = Ω1

q+1,Γ2
p,q(m

′,η′).

Combining these two estimates, we arrive at the following inequality

∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)
]

≤ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η′(f, dϕ) +


 ∑

p≤q<n

a1p,q a
2
q,n


 |m−m′|

+
∑

p≤r<q<n

a1r,q a
2
q,n

∫ ∣∣[Γ2
p,r(m

′, η′)− Γ2
p,r(m, η)](ϕ)

∣∣ Ω
1
p,r,m′,η′(dϕ)
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This implies that

∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)
]

≤ b′p,n |m−m′|+ a2p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Ω2

p,n,η′(f, dϕ)

+
∑

p≤r1<n

br1,n

∫ ∣∣[Γ2
p,r1(m

′, η′)− Γ2
p,r1(m, η)](ϕ)

∣∣ Ω
1
p,r1,m′,η′(dϕ)

Our next objective is to show that

∣∣[Γ2
p,n(m

′, η′)− Γ2
p,n(m, η)

]
(f)
]

≤ αk
p,n |m−m′|+ βkp,n

∫ ∣∣[η − η′](ϕ)
∣∣ Θk

p,n,η′(f, dϕ)

+
∑

p≤r1<r2<...<rk<n

br1,r2 . . . brk,n

∫ ∣∣[Γ2
p,r1(m

′, η′)− Γ2
p,r1(m, η)](ϕ)

∣∣ Ω
1
p,r1,m′,η′(dϕ)

for any k ≤ (n− p) for some Markov transitions Θk
p,n,m′η′(f, dϕ) and the parameters

αk
p,n = b′p,n +

k−1∑

l=1

∑

p≤r1<...rl<n

b′p,r1 br1,r2 . . . brl,n

βkp,n = a2p,n +

k−1∑

l=1

∑

p≤r1<...rl<n

a2p,r1 br1,r2 . . . brl,n

We proceed by induction on the parameter k. Firstly, we observe that the result is satisfied
for k = 1 with (

α1
p,n, β

1
p,n

)
=
(
b′p,n, a

2
p,n

)
and Θ1

p,n,η′ = Ω2
p,n,η′

We further assume that the result is satisfied at rank k. In this situation, using the fact
that ∣∣[Γ2

p,r1(m
′, η′)− Γ2

p,r1(m, η)
]
(ϕ)
]

≤ b′p,r1 |m−m′|+ a2p,r1

∫ ∣∣[η − η′](ϕ′)
∣∣ Ω2

p,r1,η′(ϕ, dϕ
′)

+
∑

p≤r0<r1

br0,r1

∫ ∣∣[Γ2
p,r0(m

′, η′)− Γ2
p,r0(m, η)](ϕ)

∣∣ Ω
1
p,r0,m′,η′(dϕ)

we conclude that
∣∣[Γ2

p,n(m
′, η′)− Γ2

p,n(m, η)
]
(f)
]

≤ αk+1
p,n |m−m′|+ βk+1

p,n

∫ ∣∣[η − η′](ϕ)
∣∣ Θk+1

p,n,m′η′(f, dϕ)

+
∑

p≤r0<r1<r2<...<rk<n

br0,r1 br1,r2 . . . brk,n

∫ ∣∣[Γ2
p,r0(m

′, η′)− Γ2
p,r0(m, η)](ϕ)

∣∣ Ω
1
p,r0,m′,η′(dϕ)RR n° 7376
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with

αk+1
p,n = αk

p,n +
∑

p≤r1<r2<...<rk<n

b′p,r1 br1,r2 . . . brk,n

βk+1
p,n = βkp,n +

∑

p≤r1<r2<...<rk<n

a2p,r1 br1,r2 . . . brk,n

and the Markov transition

βk+1
p,n Θk+1

p,n,m′η′(f, dϕ) = βkp,n Θk
p,n,η′(f, dϕ)

+
∑

p≤r1<r2<...<rk<n

a2p,r1 br1,r2 . . . brk,n

(
Ω
1
p,r1,m′,η′Ω

2
p,r1,η′

)
(dϕ)

We end the proof of the proposition using the fact that

∣∣Γ1
p,n(m

′, η′)− Γ1
p,n(m, η)

∣∣ ≤


a1p,n +

∑

p≤q<n

c2,1p,q a
1
q,n


 |m−m′|

+
∑

p≤q<n

a1q,n c
2,2
p,q

∫ ∣∣[η − η′](ϕ′)
∣∣
[
Ω
1
p,q,m′,η′Θp,q,η′

]
(dϕ′)

This proof of the proposition is now completed.

5.4 Proof of theorem 3.11

For any η ∈ P(E) and any u, u′ ∈ In, we have
∣∣Φ1

n+1,η(u)− Φ1
n+1,η(u

′)
∣∣

= |u− u′|
[
r(1− d) + rdh

∫
Yn(dy)

η(g(.,y))
[h+duη(g(.,y))][h+du′η(g(.,y))]

]

≤ |u− u′|
[
r(1− d) + rdh Yn

(
g+

[h+dm−g−)]2

)]

This implies that condition (3.2) is satisfied with

a1n,n+1 ≤ r(1− d) + rdh Yn

(
g+

[h+ dm−g−)]2

)

In the same way, for any η, η′ ∈ P(E) and any u ∈ In, we have

Φ1
n+1,η(u)− Φ1

n+1,η′(u) = rdhu
∫
Yn(dy)

1
[h+duη(g(.,y))][h+duη′(g(.,y))] (η − η′) (g(., y))

τ1n+1 ≤ rdhm+ Yn

(
g+ − g−

[h+ dm−g−]2

)

and the probability measure

Ω1
n,η′(dϕ) ∝

∫
Yn(dy)

g+(y)− g−(y)

[h+ dm−g−(y)]2
δ g(.,y)

g+(y)−g−(y)

(dϕ)
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Now, we come to the analysis of the mappings

Φ2
n+1,u(η) ∝ r(1− d)u ηM +

∫
Yn(dy) wu(η, y) Ψg(.,y)(η)M + µ(1) µ

with the weight functions

wu(η, y) :=
rduη(g(., y))

h+ duη(g(., y))
= r

(
1− h

h+ duη(g(., y))

)

Notice that

w−(y) :=
rdm−g−(y)

h+ dm−g−(y)
≤ wu(η, y) ≤ w+(y) :=

rdm+g+(y)

h+ dm+g+(y)

To have a more synthetic formula, we extend the observation state space with two auxiliary
points c1, c2 and we set

Yc
n = Yn + δc1 + δc2

we extend the likelihood and the weight functions by setting

g(x, c1) = g(x, c2) = 1

and

w−(c1) := r(1− d)m− ≤ wu(η, c1) := r(1− d)u ≤ w+(c1) := r(1− d)m+

wu(η, c2) = w+(c2) = w−(c2) := µ(1)

In this notation, we find that

Φ2
n+1,u(η) ∝

∫
Yc
n(dy) wu(η, y) Ψg(.,y)(η)My

with the collection of Markov transitions My defined below

∀y 6∈ {c2} My =M and Mc2 = µ

Notice that the normalizing constants Yc
n(wu(η, .)) satisfy the following lower bounds

Yc
n(wu(η, .)) ≥ Yc

n(w
−) = r(1− d) m− + Yn

(
w−
)
+ µ(1)

We analyze the Lipschitz properties of the mappings Φ2
n+1,u using the following decom-

position
Φ2
n+1,u(η) − Φ2

n+1,u(η
′) = ∆n+1,u(η, η

′) + ∆′
n+1,u(η, η

′)

with the signed measures

∆n+1,u(η, η
′) =

∫
Yc
n(dy)

wu(η, y)

Yc
n(wu(η, .))

[
Ψg(.,y)(η)My −Ψg(.,y)(η

′)My

]

and

∆′
n+1,u(η, η

′) =
1

Yc
n(wu(η, .))

∫
Yc
n(dy)

[
wu(η, y) − wu(η

′, y)
] (

Ψg(.,y)(η
′)My − Φ2

n+1,u(η
′)
)

RR n° 7376



Stability and Approximation of Branching Distribution Flows 50

Arguing as in the proof of theorem 3.7 given in the appendix (see for instance (5.2)), one
checks that

|∆n+1,u(η, η
′)(f)|

≤ 1
Yc
n(w

−)

(
r(1− d)m+ |(η − η′)(M(f))|+

∫
Yn(dy) w

+(y) g+(y)
g−(y)

∣∣∣(η − η′)(Sy
η′M(f))

∣∣∣
)

for some collection of Markov transitions Sy
η′ from E into itself. It is also readily checked

that

∣∣∆′
n+1,u(η, η

′)(f)
∣∣ ≤ hrdm+

Yc
n(w

−)

∫
Yn(dy)

1

(h +m−dg−(y))2
∣∣(η − η′)(g(., y))

∣∣

This clearly implies that condition (3.3) is satisfied with

a2n,n+1 ≤
1

Yc
n(w

−)

(
β(M)

[
r(1− d)m+ + Yn

(
w+g+

g−

)]
+ hrdm+Yn

(
g+ − g−

(h+m−dg−)2

))

We analyze the continuity properties of the mappings u 7→ Φ2
n+1,u(η) using the following

decomposition

Φ2
n+1,u(η) − Φ2

n+1,u′(η)

= 1
Yc
n(wu(η,.))

∫
Yc
n(dy) [wu(η, y) − wu′(η, y)]

(
Ψg(.,y)(η)My − Φ2

n+1,u′(η)
)

This implies that

∣∣∣
[
Φ2
n+1,u(η)− Φ2

n+1,u′(η)
]
(f)
∣∣∣ ≤ 1

Yc
n(w

−)

[
r(1− d) + hrd Yn

(
g+

(h+dm−g−)2

)]
|u− u′|

This shows that condition (3.5) is satisfied with

τ2n+1 ≤
1

Yc
n(w

−)

[
r(1− d) + hrd Yn

(
g+

(h+ dm−g−)2

)]

This ends the proof of the theorem.
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