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Charge-density wave and quantum fluctuations in a molecular crystal

N. Macris and C.-A. Piguet
Institut de Physique The´orique, Ecole Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland

~Received 1 June 1999!

We consider an electron-phonon system in two and three dimensions on square, hexagonal, and cubic
lattices. The model is a modification of the standard Holstein model where the optical branch is appropriately
curved in order to have a reflection positive Hamiltonian. Using infrared bounds together with a recent result
on the coexistence of long-range order for electron and phonon fields, we prove that, at sufficiently low
temperatures and sufficiently strong electron-phonon coupling, there is a Peierls instability towards a period
two charge-density wave at half-filling. Our results take into account the quantum fluctuations of the elastic
field in a rigorous way and are therefore independent of any adiabatic approximation. The strong coupling and
low-temperature regime found here is independent of the strength of the quantum fluctuations of the elastic
field. @S0163-1829~99!05543-5#
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I. INTRODUCTION

The Holstein model was originally introduced1 to describe
the motion of polarons in molecular crystals. Despite
simplifications introduced, it contains the essential featu
necessary to describe the interaction between lattice vi
tions and itinerant electrons in a crystal. In the simplest v
sion, the elastic field is modeled by a collection of Einste
oscillators with a single frequency associated to each sit
the lattice and the electrons are treated as noninteracting
mions. This is a situation where itinerant electrons inter
with a flat optical phonon branch. More sophisticated v
sions of molecular crystal models take into account a disp
sion in the optical branch, as well as the Coulomb interact
between electrons. When a single electron is present~or
when the electronic density is low!, the Holstein model has
been widely used to study the composite entity formed
the motion of the electron and its associated lattice defor
tion, the so-called ‘‘Holstein polaron.’’ We refer to Ref
2–4 for recent works on the subject.

Another situation of interest is the one where the elect
density is large and where instabilities such as supercon
tivity, charge density wave~CDW!, and spin density wave
occur. In the present work we focus on CDW formation f
the Holstein model at half filling. The prediction that such
instability may be present in electron-phonon systems g
back to Peierls5 and Fröhlich.6 They showed within the adia
batic, or more accurately static, approximation for the ela
field that, for one dimensional electron-phonon systems
periodic modulation of the lattice commensurate to the e
tron filling would open a gap at the Fermi level. Remarkab
the electronic energy lowering caused by the gap openin
larger than the elastic energy cost and therefore a ‘‘Pei
instability’’ occurs. This phenomenon plays an importa
role in organic compounds such as polymer chains7 and is
for instance responsible for bond alternation in polyacetyl
chains (CH)x ~Ref. 8! or annulenes. In two- or three
dimensional systems, this instability is not generic beca
of the more complicated shape of the Fermi surface. Ho
ever, if the Fermi surface has nesting properties~for example
on a square lattice at half filling it is perfectly nested!, the
PRB 600163-1829/99/60~19!/13484~8!/$15.00
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Peierls instability will occur for the same reasons than in o
dimension.

The analysis of Peierls and Fro¨hlich and most of the sub
sequent work has been based on the adiabatic approxim
for the elastic field. In many respects, it is still an open pro
lem to determine when the Peierls instability survives aga
the quantum fluctuations of the elastic field. According to t
analysis of Hirsch and Fradkin9 and to perturbative
renormalization-group calculations,10 the Peierls instability
should not occur for weak electron-phonon coupling if t
itinerant fermions are spinless but should occur for any c
pling when spin is taken into account~at least at half filling!.
However, recently this view has been challenged by num
cal work,11 which predicts that the instability is destroyed
weak electron-phonon coupling even when spin is involv
For strong electron-phonon coupling, it is likely that th
CDW forms in all cases.

There exist a few rigorous studies of the question start
with a result of Kennedy and Lieb12 for the ~static! Su-
Schrieffer-Heeger~SSH! model. Their analysis shows rigor
ously that a period two ground state forms at half fillin
consisting of alternating short and long bonds when electr
electron interaction is not taken into account. This result
been extended when a Hubbard interaction is added to
SSH Hamiltonian, by using a Jordan-Wigner mapping of
problem on a spin model.13 It is shown that at half filling the
ground state is either translation invariant or period two. T
static Holstein model has also been the object of rigor
work in one, two and three dimensions. It is known that
the half filled situation the ground state is period two in a
dimension and that this symmetry breaking persists for l
temperatures for dimensions greater or equal to two.14 Away
from half-filling, it has been proved in the one-dimension
static Holstein model that the Peierls instability also occ
for rational densities.16 When quantum fluctuations of th
elastic field are taken into account Benfatto, Gallavotti, a
Lebowitz17 have shown, using a rigorous version of th
renormalization-group analysis valid for spinless electrons
one dimension, that there is no instability for weak electro
phonon coupling and the electron correlation functions
those of a Luttinger liquid. We note that their analysis ho
13 484 ©1999 The American Physical Society
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PRB 60 13 485CHARGE-DENSITY WAVE AND QUANTUM . . .
for any electron filling but breaks down when electron spin
included. Also it does not cover the case of large electr
phonon coupling. A very general result of Freericks a
Lieb15 asserts that for any even number of electrons o
finite lattice, the ground state of the Holstein model is uniq
and has zero total spin. This property is compatible with
presence or absence of a Peierls or other instabilities
with the uniqueness or nonuniqueness of ground or Gi
states in thermodynamic limit, as long as the system is
singlet state.

In this paper, we consider the two and three dimensio
situation for a modified Holstein model taking into accou
quantum fluctuations of the elastic field exactly. Our mo
consists of noninteracting spinless electrons on square,
agonal or cubic lattices interacting with an optical phon
branch, which is appropriately curved. For this special p
non branch, we are able to use infrared bounds together
a recent result on the coexistence of long-range order
electron and phonon fields, to prove that a period two CD
forms at strong coupling and half filling. Our result show
that at least for some regime of parameters the Peierls in
bility survives quantum and thermal fluctuations. The regi
that we identify is independent of the strength of the qu
tum fluctuations. Our use of infrared bounds is based on
recent observation that some fermion Hamiltonians have
reflection positivity property if the hopping matrix satisfie
some sign conditions.18,19 These conditions are most easi
expressed in terms of the ‘‘magnetic flux’’ through
plaquette, i.e., the phase of the product of hopping am
tudes around an elementary loop of the lattice. For a squ
or cubic lattice it turns out that the magnetic flux throu
squares must be equal top, whereas for hexagonal lattice th
magnetic flux through hexagons must vanish. We note th
is not necessary to interpret this sign condition in terms
magnetic flux. For example in some situations the arran
ment of orbitals of neighboring atoms may lead to over
integrals having these sign properties. Such a situation
been encountered in coupled polymer chains20 and has also
been the subject of speculations in the chemistry literatur21

The paper is organized as follows. In Sec. II, we give
formal definition of the model, the main results and we o
line the general strategy of the proof. Section III deals w
the coexistence of long-range order for electron and pho
fields in a form which relates their associated correlat
functions. This is then combined with the infrared boun
derived in Sec. IV to complete the proof for the square a
cubic lattices in Sec. V. The necessary modifications for
hexagonal lattice are given in Sec. VI. Finally, we conclu
by a discussion of a few open problems, that may be stud
within the present formalism.

II. DEFINITION OF THE MODEL AND MAIN RESULTS

We consider a system of electrons and phonons inter
ing on a finite hypercubic latticeN3¯3N with N even, in
d dimensions and with periodic boundary conditions. We c
uLu5Nd the volume of the system. The Hamiltonian und
consideration has the form

HL5HL
e 1HL

ph1HL
int . ~2.1!

HL
e is the kinetic Hamiltonian of spinless electrons
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HL
e 5 (

x,yPL
txycx

1cy , ~2.2!

wherecx
1 andcx are the creation and annihilation operato

for an electron at sitex. They satisfy the canonical anticom
mutation relations $cx

1 ,cy
1%5$cx ,cy%50 and $cx

1 ,cy%
5dxy . The hopping amplitudestxy50 for ux2yuÞ1 and
txy5eiuxy for ux2yu51 where the phasesuxy are chosen in
such a way that there is a magnetic fluxp across each el-
ementary plaquette of the lattice, i.e.,(plaquetteuxy5p. We
chooseN to be even and, as explained in the introductio
impose such an external magnetic flux in order to hav
Hamiltonian, which exhibits the reflection positivity prop
erty.

The Hamiltonian for the phononsHL
ph is

HL
ph5(

k
v~k!~bk

1bk11/2!, ~2.3!

where the creation and annihilation operators for a pho
with wave vectork5(k1 ,...,kd) satisfy commutation rela-
tions @bk

1 ,bk8
1

#5@bk ,bk8#50. All k sums are over the firs
Brillouin zone associated with the lattice. In the standa
Holstein model, one has a flat dispersion relationv(k)5v
5Ak/m wherem is a mass andk the oscillator constant.1

Here, we consider a slightly curved dispersion relation of
form

v~k!5Av21
8a

m S d1(
i 51

d

coski D , ~2.4!

where a is some positive parameter, the reason being t
Eq. ~2.4! is compatible with reflection positivity. In fact ther
is a general class of dispersion relations that we could all
the simplest of which is Eq.~2.4!, but we will not pursue this
issue here.

For the electron-phonon interaction we choose the sim
form

HL
int5g(

k

1

A2mv~k!
~b2k1bk

1!rk , ~2.5!

whererk is the Fourier transform of the electronic dens
nx21/25cx

1cx21/2

rk5 (
xPL

e2 ik•x

AuLu
~nx21/2!. ~2.6!

It turns out to be more convenient to use the direct sp
language. We introduce the conjugate variablessx and px
with @sx ,py#5 idxy ,

sx5(
k

eik•x

AuLu

1

A2mv~k!
~bk1b2k

1 !

px5(
k

eik•x

AuLu

1

2i
A2mv~k!~bk2b2k

1 !. ~2.7!

In these variables, the Hamiltonian for the phonons has
form
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HL
ph5 (

xPL

px
2

2m
1

k

2 (
xPL

sx
21a (

ux2yu51
~sx1sy!2 ~2.8!

and the electron-phonon interaction is on-site

HL
int5g (

xPL
sxS nx2

1

2D . ~2.9!

The Hamiltonian~2.1! is invariant under the following uni-
tary transformation sx→2sx , cx

1→(21)uxucx , cx→
(21)uxucx

1 . As a consequence, we have that the thermal
pectation value~denoted bŷ 2&L! of the number of elec-
trons is half the number of sites and the one of thesx vari-
ables is zero:̂nx&L5 1

2 , ^sx&L50 for any temperatureb21.
In this paper, we are interested in the two long-range

ders for thesx and nx variables atk05(p,p,p) in three
dimensions andk05(p,p) in two dimensions, i.e., we will
show that there existse1 ande2 independent ofL such that

1

uLu ^s2k0
sk0

&L5
1

uLu2 (
x,yPL

~21! uxu1uyu^sxsy&L>e1.0

~2.10!

and

1

uLu ^r2k0rk0
&L5

1

uLu2 (
x,yPL

~21! uxu1uyu^~nx21/2!

3~ny21/2!&L>e2.0 ~2.11!

for sufficiently largeL and some range of parameters. Mo
precisely we show that long-range order is present on
square lattice at zero temperature if (k132a)/gAa<0.19
and at sufficiently low temperatures if (k148a)/gAa
<0.22 for a cubic lattice. It is of interest to notice that t
strong-coupling regime obtained here is independent of
massm of the oscillators.

On the hexagonal lattice~Sec. VI! we obtain a similar
result for zero-magnetic flux~i.e., all hopping terms have th
same sign!, namely Eqs.~2.10! and ~2.11! are valid at zero
temperature for (k124a)/gAa<0.18.

It has to be noticed that in the two-dimensional ca
~square and hexagonal lattices! our result is limited to zero
temperature but this is probably an artifact of our techniq
Since the symmetry breaking involved in this model is d
crete~Ising like!, we expect the result to be valid also at lo
temperatures.

One would think that the adjunction of thea term in the
phonon Hamiltonian is able to create the long-range or
~2.10! even atg50 since it has tendency to force two neare
neighborssx andsy to have opposite signs or, in the phono
language, the modek0 is the most favorable energetical
since v(k) is minimum for k5k0 . This is in fact not the
case. Indeed we can compute explicitly in the caseg50 the
expectation value we are interested in. We find

1

uLu ^s2k0
sk0

&L5
1

uLu2 (
x,yPL

~21! uxu1uyu^sxsy&L

5
1

uLu
1

2mv S 11
2

ebv21D ~2.12!
x-

r-

e

e

s

.
-

r
t

showing that there is no long-range order since Eq.~2.12!
tends to zero asuLu→`. We can thus conclude that th
long-range orders will appear only if the electron-phon
interaction is present. For this reason, this modified mo
provides an example of long-range order induced by
electron-phonon interaction in the presence of realistic qu
tum fluctuations.

Let us summarize the main steps for the strategy of
proof. First, in Sec. III, we establish the coexistence of
two long-range orders Eqs.~2.10! and~2.11!. For this we use
results developed in a previous paper22 with which we can
get a relation between the two-point Duhamel functio
(s2k ,sk)L and (r2k ,rk)L for anyk. If we use this relation at
k5k0 , this shows the coexistence we are looking for. Ho
ever, in the next steps of the proof, we will also need t
relation for kÞk0 . In Sec. IV, we find an upper infrared
bound for the Duhamel two-point functions (s2k ,sk)L using
reflection positivity and, with the help of the previously me
tioned relation, we deduce an infrared bound for (r2k ,rk)L .
In Sec. V, we use a theorem of Dyson-Lieb-Simon23 to ob-
tain an upper bound on the two-point correlation functi
^r2krk&L and then the sum rule

(
k

^r2krk&L5 (
xPL

^~nx21/2!2&L5
uLu
4

~2.13!

to prove the existence of long-range order~2.11! for the elec-
tronic variables atk0 . A more direct way would have been t
combine the infrared bound on (s2k ,sk)L with a sum rule
for the sx variables

(
k

^s2ksk&L5 (
xPL

^sx
2&L . ~2.14!

It would be sufficient to have a lower bound for this quanti
but we were unable to find a convenient one. We will com
back to this point at the end of Sec. V.

III. COEXISTENCE OF LONG-RANGE ORDERS
FOR ELECTRON AND PHONON FIELDS

In a previous paper, we have developed a general form
ism to discuss the possible coexistence of two long-ra
orders in a quantum system at finite temperature22 which we
summarize below. The Duhamel two-point function of tw
operatorsF andG is defined by

~F,G!L5
1

ZL
E

0

1

dn Tr~e2nbHLFe2~12n!bHLG!. ~3.1!

The Duhamel two-point function (F1,F)L is related to the
symmetrized two-point correlation function through upp
and lower bounds23

1
2 ^F1F1FF1&L f @hL~F !#<~F1,F !L< 1

2 ^F1F1FF1&L
~3.2!

where

hL~F !5
^†F1,@bHL ,F#‡&L

2^F1F1FF1&L

~3.3!

and the functionf (u) is defined implicitly foru.0 by
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f ~u tanhu!5
1

u
tanhu. ~3.4!

The functionf (u) is continuous, convex and strictly decrea
ing with limu→0 f (u)51 and limu→` f (u)50.

Let us suppose that the following commutation relation
satisfied between three local operatorsAx , Bx , andCx

@HL ,Ax#5mBx1nCx ~3.5!

wherem andn are two complex numbers. LetAk ,Bk ,Ck the
Fourier transforms defined as in Eq.~2.6!. As a consequence
of Eq. ~3.5! we have the following relation between the D
hamel two-point functions ofBk andCk ~Ref. 22!

@ umuA~Bk
1 ,Bk!L2unuA~Ck

1 ,Ck!L#2<
1

b
^@Ak

1 ,Kk#&L ,

~3.6!

whereKk5@HL ,Ak#.
With the help of inequalities~3.2! and ~3.6!, we deduce

the following general theorem of coexistence22

Theorem 1

Assume there exist three local observablesAx ,Bx ,Cx sat-
isfying Eq.~3.5!. Suppose also that, for a givenk, there exist
three positive constantsak , bk , and ck independent ofuLu
such that^†Ak

1 ,@HL ,Ak#‡&L<ak , ^†Bk
1 ,@HL ,Bk#‡&L<bk,

and^†Ck
1 ,@HL ,Ck#‡&L<ck . Then for any temperatureb21

and any sufficiently largeL, there existse1 independent ofL
such that

1

uLu ^Bk
1Bk1BkBk

1&L>e1.0 ~3.7!

if and only if there existse2 independent ofL such that

1

uLu ^Ck
1Ck1CkCk

1&L>e2.0. ~3.8!

To apply these results to our Hamiltonian~2.1!, we note
the following commutation relation

@H,px#5 i F ~k18ad!sx14a (
y

uy2xu51

syG1 ig~nx2 1
2 !5 iSx

1 ig~nx2 1
2 !. ~3.9!

Since the Fourier transform ofSx is

Sk5Fk14aS 2d12(
i 51

d

coski D Gsk ~3.10!

Eq. ~3.6! becomes

„A~S2k ,Sk!L2gA~r2k ,rk!L…
2<

1

b
^†p2k ,@H,pk#‡&L .

~3.11!

The double commutator on the right-hand side is simpl
constant equal tok14a(2d12( i coski). Finally, Eq.~3.11!
reads
-

s

a

H Fk14aS 2d12(
i 51

d

coskD GA~s2k ,sk!L

2gA~r2k ,rk!LJ 2

<
1

b Fk14aS 2d12(
i 51

d

coski D G .

~3.12!

We will need inequality~3.12! in the next sections fork
Þk0 . For the case under consideration in this section, i.e.
prove the coexistence of the two long-range orders ak
5k0 , we evaluate Eq.~3.12! at k5k0 to get

kA~s2k0
,sk0

!L>gA~r2k0
,rk0

!L2Ak

b
. ~3.13!

We can now get information about the two-points correlat
functions using the lower and upper bounds~3.2!. Since the
sx are commuting variables

~s2k0
,sk0

!L<^s2k0
sk0

&L . ~3.14!

For the lower bound involving the electronic densities, w
need to compute the double commutator

†n2k ,@H,nk#‡5
1

uLu (
x,yPL

txy„2 cos@k•~y2x!#22…cx
1cy .

~3.15!

The expectation value of Eq.~3.15! is bounded by 8d since
utxy„2 cos@k(y2x)#22…u<4 and u^cx

1cy&Lu<1. Since the
function f is decreasing, we can replace the double comm
tator by 8d and get

~r2k0
,rk0

!L>^r2k0
rk0

&L f S 4bd

^r2k0
rk0

&L
D . ~3.16!

where we also used the fact that thenx variables commute.
Finally, from Eqs.~3.13!, ~3.14!, and~3.16!

kA^s2k0
sk0

&L>gA^r2k0
rk0

&L f S 2bd

^r2k0
rk0

&L
D 2Ak

b
.

~3.17!

This last inequality shows that if̂r2k0
rk0

&L5O(uLu), we

have also that̂ s2k0
sk0

&L5O(uLu) since the functionf (x)
goes to 1 asx goes to zero. In Sec. IV, we will prove th
existence of the long-range order for the electronic densi
at k5k0 . Because of Eq.~3.17!, this implies the existence o
the long-range order in the phonon variables.

To close this section, let us notice that the commutat
relation ~3.9! in the caseg50 immediately leads to the ab
sence of long-range order in the phonon variables for ank.
This is consistent with the exact computation~2.12!.

IV. INFRARED BOUNDS

The first step is to derive an infrared bound for the D
hamel two-point function of the phonon variables (s2k ,sk)L

for any kÞk0 by using reflection positivity. We couple th
phonon field in the Hamiltonian to a real symmetric fie
hxy , hxy5hyx , as follows
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HL~$hxy%!5 (
xPL

px
2

2m
1

k

2 (
xPL

sx
21a (

ux2yu51
~sx1sy2hxy!

2

1 (
ux2yu51

txycx
1cy1U (

xPL
sx~nx2 1

2 !. ~4.1!

In the form~4.1!, HL($hxy%) is not reflection positive. How-
ever, it can be transformed into a reflection positive fo
after a succession of appropriate transformations. We st
that these transformations cannot be done in general for
mions systems because the kinetic term usually does
have the correct sign properties, except if a fluxp is imposed
through each plaquette of the square or cubic lattice. This
been shown in detail recently19 and using these results on
deduces in a standard way that the partition functionZL

associated to Eq.~4.1! satisfiesZL($hxy%)<ZL .
We can now expand the left-hand side of this last inequ

ity to second order in$hxy% to obtain

S (
ux2yu51

hxysx , (
ux82y8u51

hx8y8sx8D
L

<
1

8ba (
ux2yu51

hxy
2 .

~4.2!

This inequality has been derived for real symmetrichxy but it
is possible to extend it to complex numbers:

S (
ux2yu51

hxy* sx , (
ux82y8u51

hx8y8sx8D
L

<
1

8ba (
ux2yu51

uhxyu2.

~4.3!

For eachk in the first Brillouin zone, we choosehxy to be

hxy5
e2 ik•x1e2 ik•y

AuLu
. ~4.4!

This immediately leads to the infrared bound for the phon
variables

~s2k ,sk!L<
1

4ba

1

~2d12( i coski !
. ~4.5!

From the relation~3.12! we transfer the information con
tained in Eq.~4.5! onto the Duhamel two-point function fo
the electronic densities

gA~r2k ,rk!L<Fk14aS 2d12(
i

coski D GA~s2k ,sk!L

1H 1

b Fk14aS 2d12(
i

coski D G J 1/2

~4.6!

and inserting Eq.~4.5!
ss
r-
ot

as

l-

n

gA~r2k ,rk!L<
k14a~2d12( i coski !

A4ba~2d12( i coski !

1Fk14a~2d12( i coski !

b G1/2

<
k116ad

A4ba~2d12( i coski !
1

Ak116ad

Ab

<
k116ad1Ak116adA4a~2d12( i coski !

A4ba~2d12( i coski !

<
2~k116ad!

A4ba~2d12( i coski !
. ~4.7!

In summary, we have also an infrared bound for the elect
density

~r2k ,rk!L<
~k116ad!2

bag2~2d12( i coski !
7

Bk

b
. ~4.8!

V. PROOF OF LONG-RANGE ORDER FOR THE SQUARE
AND CUBIC LATTICES

Inverting the lower bound in Eq.~3.2! we obtain an esti-
mate for the two-point correlation function of the electron
variables

^r2krk&L<
1

2
ABkCk cothAb2Ck

4Bk
, ~5.1!

whereBk is defined in Eq.~4.8! andCk is the upper bound of
the double commutator~3.15!

^†n2k ,@H,nk#‡&L<8d7Ck . ~5.2!

Using Eq.~5.1! and the sum rule~2.13! in the limit of large
volumes, we get

1

uLu ^r2k0
rk0

&L>
1

4
2

1

~2p!d E ddk

3
A2~k116ad!

g
A d

a~2d12( i coski !
.

3cothF &bg

~k116ad!
AdaS 2d12(

i
coski D G .

~5.3!

Inequality ~5.3! shows that there is long-range order whe
ever the right hand side is strictly positive. Because of th
rem 1 the long-range order occurs both in 1/uLu^r2k0

rk0
&L

and in 1/uLu^s2k0
sk0

&L .
The integral in Eq.~5.3! can be computed numericall

~whenb5`!, which leads to the condition stated in Sec.
for three dimensions

~k148a!

gAa
<0.22, d53, and largeb. ~5.4!
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In two dimensions, Eq.~5.3! is not a convergent integra
One must first take the limitb→`, which yields an inequal-
ity similar to Eq.~5.3! but with the coth replaced by 1. Com
puting the remaining integral leads to the condition

~k132a!

gAa
<0.19, d52, and b5`. ~5.5!

If we fix a andk, we see that there will be long-range ord
for large values ofg. On the other hand, if we fixg anda,
there will be long-range order for sufficiently smallk. These
two results are intuitively plausible: there is long-range or
for large electron-phonon interaction and also the oscilla
constant should not be too large. Finally, if we fixg andk,
the situation fora is more subtle. We see that it should n
be too large and also it should not be too small. In particu
we are not allowed to seta50 and thus we cannot conclud
anything concerning the Holstein model with a flat branc

A surprising point is the absence of the mass of
phonons in the derived conditions. It would not have be
the case if we would have considered the sum rule~2.14!.
Indeed, in this case, we would have transferred inequa
~4.5! onto the two-point correlation function for thesx vari-
ables. For this, we need to compute the double commut
†s2k ,@HL ,sk#‡51/m that now depends onm. With this
method, we obtain the inequality

1

uLu ^s2k0
sk0

&L>^sx
2&L2

1

~2p!d E ddk

3
1

2
A 1

4am~2d12( i coski !

3cothA b2

16ma~2d12( i coski !
.

~5.6!

Unfortunately, we are unable to use it since we do not kn
how to derive a lower bound for̂sx

2&L . However, this dis-
cussion suggests that a lower bound on^sx

2&L would yield
existence of long-range order for another region in the sp
of parameters, which would now depend onm.

VI. THE HEXAGONAL LATTICE

Using the same technique, we can prove a similar re
for a two-dimensional hexagonal lattice at zero temperat
In this case however, we do not need to impose an exte
magnetic flux on the system. We can thus choose real p
tive hopping amplitudestxy51 for ux2yu51 and in direct
space the Hamiltonian is given again by the sum of E
~2.2!, ~2.3!, and~2.5!. This Hamiltonian is still invariant un-
der a particle-hole transformation and we have^nx&L5 1

2 ,
^sx&L50. The two long-range orders we are interested in
the ones corresponding to a ‘‘chessboard’’ configuration
the sx or thenx .

The hexagonal lattice is composed of two sublatticesA
andB. In Fig. 1, we have represented the sites ofA as black
dots and we have defined the vectorsu1 , u2 , u3 and U1 ,
U2 , andU3 . It is natural to define the analog of the Fouri
transform of a local observableOx using a basis of eigen
functions of the Hamiltonian(x,yPLtxycx

1cy for a single-
r
r

r,

e
n

ty

or

w

ce

lt
e.
al

si-

s.

e
r

particle hopping on the hexagonal lattice. The eigenfuncti
and eigenvalues are parameterized by a wave vectork in the
first Brillouin zone of the triangular lattice defined byA ~one
has to notice that this triangular lattice hasuLu/2 sites and
thus we have alsouLu/2k’s in the first Brillouin zone! and by
another quantum numbert561. The eigenenergies ar
given byek,t5tEk with

Ek5A312@cos~k•U1!1cos~k•U2!1cos~k•U3!#,
~6.1!

and the eigenfunctions are

Ck,r~x!5
e2 ik•x

AuLu
, xPA

~6.2!

Ck,r~x!5
tlke

2 ik•x

AuLu
, xPB,

where

lk5(
j 51

3
eik•uj

Ek
. ~6.3!

They satisfy the orthogonality relation

^Ck,tuCk8,t8&5dkk8dtt8 . ~6.4!

We define the Fourier transform on the hexagonal lattice

Ok,t5 (
xPL

Ck,t~x!Ox . ~6.5!

The long-range orders we are interested in are the one in
two-point correlation functionŝ s2k,tsk,t&L and ^(n2k,t
2 1

2 )(nk,t2 1
2 )&L at k50 andt521. The reason is that a

k50 andt521, we have

s0,215
1

AuLu
(
xPA

sx2
1

AuLu
(
xPB

sx ~6.6!

sincel051. Long-range order in this last operator will ind
cate the presence of a chessboard configuration. We
prove that there existe1 ande2 independent ofL such that

FIG. 1. The hexagonal lattice.



ex
n

fin
fo
he

fe

th
v

o

e

n
x

he
q.

o-
n

13 490 PRB 60N. MACRIS AND C.-A. PIGUET
1

uLu ^s0,21s0,21&L5
1

uLu2 K S (
xPA

sx2 (
xPB

sxD
3S (

yPA
sy2 (

yPB
syD L

L

>e1.0

~6.7!

and

1

uLu ^r0,21r0,21&L5
1

uLu2 K F (
xPA

~nx21/2!2 (
xPB

~nx21/2!G
3F (

yPA
~ny21/2!2 (

yPB
~ny21/2!G L

L

>e2.0 ~6.8!

for largeL and zero temperature. The global strategy is
actly the same as for the square lattice in two dimensio
We prove the coexistence of the two long-range orders,
upper bounds for the Duhamel two-point functions, then
the two-point correlation functions and finally we use t
sum rule

(
k

(
t561

^r2k,trk,t&L5 (
xPL

^~nx21/2!2&L5
uLu
4

~6.9!

to conclude the proof. To prove the first equality in Eq.~6.9!,
one uses the fact thatlkl2k5lklk* 51. Let us now indicate
the main steps of the proof insisting on the points that dif
from the square lattice case.

Coexistence of the two long-range orders

For the coexistence of the two long-range orders and
relation between the Duhamel two-point functions, we ha
the commutation relation

@HL ,px#5 iSx1 iU ~ny21/2!, ~6.10!

where

Sx5~k112a!sx14a(
i 51

3

sx1ui
, xPA

~6.11!

Sx5~k112a!sx14a(
i 51

3

sx2ui
, xPB.

In Fourier transform, we have

Sk,t5@k14a~31tEk!#sk,t ~6.12!

and for the pointk50, t521 in which we are specially
interested,S0,215ks0,21 . With these facts, it is easy t
prove the coexistence of the two long-range orders~6.7! and
~6.8!. Then, by Eq.~3.6!, we obtain the relation between th
Duhamel two-point functions

$@k14a~31tEk!#A~s2k,t, ,sk,t!L2UA~r2k,t ,rk,t!L%2

<
1

b
@k14a~31tEk!#. ~6.13!
-
s.
d
r

r

e
e

Infrared bounds

To derive an infrared bound for (S2k,t ,Sk,t)L we proceed
as in Eqs.~4.2!–~4.5!. For the hexagonal lattice one ca
bring Eq.~4.1! into a reflection positive form when the flu
through each plaquette is zero. The analog of Eq.~4.3! is

S (
xPA

(
i 51

3

hx,x1ui
* ~sx1sx1ui

!, (
yPA

(
j 51

3

hy,y1uj
~sy1sy1uj

!D
L

<
1

4ab (
xPA

(
i 51

3

uhx,x1uj
u2. ~6.14!

We now choosehx,x1uj
for xPA to be~for eachk in the first

Brillouin zone and eacht!

hx,x1uj
5

1

AuLu
e2 ik•x~11tlke

2 ik•uj !. ~6.15!

Inserting this form into Eq.~6.14!, we get

~s2k,t ,sk,t!L<
1

4ab~31tEk!
. ~6.16!

We can transfer this information onto an inequality on t
Duhamel two-point functions for the electrons using E
~6.13!

gA~r2k,t ,rk,t!L<
k14a~31tEk!

A4ab~31tEk!
1Ak14a~31tEk!

b

<
k124a

Aab~31tEk!
~6.17!

leading to

~r2k,t ,rk,t!L<
~k124a!2

g2ab~31tEk!
7

Bk,t

b
. ~6.18!

Inequalities on two-point correlation functions

As for the square lattice, the upper bound for the tw
point correlation function in the electronic density is give
by

^r2k,trk,t&L<
1

2
ABk,tCk,t cothAb2Ck,t

4Bk,t
, ~6.19!

whereBk,t is the bound given in Eq.~6.18! andCk,t is the
upper bound on the double commutator

^†n2k ,@H,nk#‡&L5
1

uLu (
x,yPL

txy~22te2 ik•~x2y!lk

2teik•~x2y!l2k!^cx
1cy&L<127Ck,t .

~6.20!

Finally, in the zero-temperature limitb→` and for large
volumes, we get
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1

uLu ^r0,21r021&L>
1

4
2

1

~2p!2 E d2k

3 (
t561

1

2
A12~k124a!2

g2a~31tEk!
.

~6.21!

Evaluating the integrals in Eq.~6.20! leads to the final con-
dition on the hexagonal lattice for zero temperature

k124a

gAa
,0.18. ~6.22!

The qualitative behavior in the parametersg, a, andk is the
same as for the square lattice.

VII. CONCLUSION

In the present paper we have provided a rigorous proo
the stability of the Peierls instability at half filling whe
quantum and thermal fluctuations are taken into account.
results are valid for dimensions greater or equal to two fo
modified Holstein model. The regime investigated here
limited to strong coupling but is independent of the stren
of the quantum fluctuations. Of course, we expect that
weak coupling the massm of the oscillators should play a
role but our method does not give any information about t
situation. An important drawback of infrared bounds us
here is that we cannot treat the one dimensional case.

One would also like to treat the standard Holstein mo
where the dispersion relation is flat. However we do n
know how to obtain the appropriate infrared bound beca
it is not apparent how to couple the phonon fieldsx to thehxy
variables. Another strategy would be to use so-called ch
board estimates to perform a sort of Peierls argument.
have carried out this program for a simplified version of t
s

f

ur
a
s
h
r

s
d

l
t
e

s-
e

Holstein model where the Einstein oscillators at each sitx
PL are replaced by two levels systems modeled with Pa
matrices. More precisely, in the Hamiltonian,sx is replaced
by sx

(3) andpx
2/2m by esx

(1)(e;1/m). For such a model, it is
found that in two dimensions the Peierls instability occu
for all ‘‘electron-phonon’’ coupling for weak enough quan
tum fluctuationse.24

Another important issue is the effect of electron spin a
electron-electron Coulomb interaction. Most of the analy
carried out here is still valid if we consider spin and add
the Hamiltonian a Hubbard termU(xPL(nx↑21/2)(nx↓
21/2). The coexistence theorem is still valid when appli
for sk and rk51/uLu(xPL(nx↑1nx↓21). Also since the
Hubbard term is reflection positive at half filling we ma
deduce again infrared bounds for (s2k ,sk)L and (r2k ,rk)L .
The extra information that needs to be controlled is a low
bound for

(
k

^r2krk&L5 (
xPL

^~nx↑1nx↓21!2&L52 (
xPL

^nx↑nx↓&L .

~7.1!

In other words, one needs to prove that there is a finite d
sity of doubly occupied sites in order to obtain a Peie
instability. WhenU→`, ^nx↑nx↓&L→0 so that we do not
expect to have a Peierls instability and therefore it should
present only for moderate Coulomb interaction. Let us not
that if Eq. ~7.1! is of the order ofguLu for someg.0, then
the analysis presented in this work automatically implies t
at half filling there is a CDW period two state.
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6H. Fröhlich, Proc. R. Soc. London, Ser. A223, 296 ~1954!.
7D. Baeriswyl, D. K. Campbell, and S. Mazumdar, inConjugated

Conducting Polymers, Springer Series in Solid State Science
Vol. 102, p. 7~Springer-Verlag, Berlin, 1992!.

8W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B22,
2099 ~1980!.

9J. E. Hirsch and E. Fradkin, Phys. Rev. B27, 4302~1983!.
10L. G. Caron and C. Bourbonnais, Phys. Rev. B29, 4230~1984!.
11E. Jeckelmann, C. Zhang, and S. R. White, Phys. Rev. B60, 7950

~1999!.
,

12T. Kennedy and E. H. Lieb, Phys. Rev. Lett.59, 1309~1987!.
13E. H. Lieb and B. Nachtergaele, Phys. Rev. B51, 4777~1995!.
14J. L. Lebowitz and N. Macris, J. Stat. Phys.76, 91 ~1994!.
15J. K. Freericks and E. H. Lieb, Phys. Rev. B51, 2812~1995!.
16G. Benfatto, G. Gentile, and V. Mastropietro, J. Stat. Phys.92,

1071 ~1998!.
17G. Benfatto, G. Gallavotti, and J. L. Lebowitz, Helv. Phys. Ac

68, 312 ~1995!.
18E. H. Lieb, Phys. Rev. Lett.73, 2158~1994!.
19N. Macris and B. Nachtergaele, J. Stat. Phys.85, 745 ~1996!.
20D. Baeriswyl and K. Maki, Phys. Rev. B38, 8135~1988!.
21M. J. S. Dewar and R. C. Dougherty,The PMO Theory of Or-

ganic Chemistry~Plenum, New York, 1975!, p. 106.
22N. Macris and C.-A. Piguet, J. Phys. A32, 749 ~1999!.
23F. J. Dyson, E. H. Lieb, and B. Simon, J. Stat. Phys.18, 335

~1978!.
24N. Macris and C.-A. Piguet~unpublished!.


