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Charge-density wave and quantum fluctuations in a molecular crystal
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We consider an electron-phonon system in two and three dimensions on square, hexagonal, and cubic
lattices. The model is a modification of the standard Holstein model where the optical branch is appropriately
curved in order to have a reflection positive Hamiltonian. Using infrared bounds together with a recent result
on the coexistence of long-range order for electron and phonon fields, we prove that, at sufficiently low
temperatures and sufficiently strong electron-phonon coupling, there is a Peierls instability towards a period
two charge-density wave at half-filling. Our results take into account the quantum fluctuations of the elastic
field in a rigorous way and are therefore independent of any adiabatic approximation. The strong coupling and
low-temperature regime found here is independent of the strength of the quantum fluctuations of the elastic
field. [S0163-182609)05543-5

[. INTRODUCTION Peierls instability will occur for the same reasons than in one
dimension.
The Holstein model was originally introducei describe The analysis of Peierls and Filich and most of the sub-

the motion of polarons in molecular crystals. Despite thesequent work has been based on the adiabatic approximation
simplifications introduced, it contains the essential feature$or the elastic field. In many respects, it is still an open prob-
necessary to describe the interaction between lattice vibrdem to determine when the Peierls instability survives against
tions and itinerant electrons in a crystal. In the simplest verthe quantum fluctuations of the elastic field. According to the
sion, the elastic field is modeled by a collection of Einsteinanalysis of Hirsch and Fradikinand to perturbative
oscillators with a single frequency associated to each site anormalization-group calculatiod$,the Peierls instability
the lattice and the electrons are treated as noninteracting feshould not occur for weak electron-phonon coupling if the
mions. This is a situation where itinerant electrons interacitinerant fermions are spinless but should occur for any cou-
with a flat optical phonon branch. More sophisticated ver-pling when spin is taken into accougat least at half filling.
sions of molecular crystal models take into account a disperHowever, recently this view has been challenged by numeri-
sion in the optical branch, as well as the Coulomb interactiortal work!! which predicts that the instability is destroyed at
between electrons. When a single electron is pregent weak electron-phonon coupling even when spin is involved.
when the electronic density is Iowthe Holstein model has For strong electron-phonon coupling, it is likely that the
been widely used to study the composite entity formed byCDW forms in all cases.
the motion of the electron and its associated lattice deforma- There exist a few rigorous studies of the question starting
tion, the so-called “Holstein polaron.” We refer to Refs. with a result of Kennedy and Liéb for the (statig Su-
2-4 for recent works on the subject. Schrieffer-HeegefSSH model. Their analysis shows rigor-
Another situation of interest is the one where the electrorously that a period two ground state forms at half filling
density is large and where instabilities such as superconduconsisting of alternating short and long bonds when electron-
tivity, charge density wavéCDW), and spin density wave electron interaction is not taken into account. This result has
occur. In the present work we focus on CDW formation forbeen extended when a Hubbard interaction is added to the
the Holstein model at half filling. The prediction that such anSSH Hamiltonian, by using a Jordan-Wigner mapping of the
instability may be present in electron-phonon systems goegroblem on a spin modéf.It is shown that at half filling the
back to Peierfsand Frdnlich.° They showed within the adia- ground state is either translation invariant or period two. The
batic, or more accurately static, approximation for the elastictatic Holstein model has also been the object of rigorous
field that, for one dimensional electron-phonon systems, aork in one, two and three dimensions. It is known that for
periodic modulation of the lattice commensurate to the electhe half filled situation the ground state is period two in any
tron filling would open a gap at the Fermi level. Remarkably,dimension and that this symmetry breaking persists for low
the electronic energy lowering caused by the gap opening i.emperatures for dimensions greater or equal to'fvaway
larger than the elastic energy cost and therefore a “Peierlfom half-filling, it has been proved in the one-dimensional
instability” occurs. This phenomenon plays an importantstatic Holstein model that the Peierls instability also occurs
role in organic compounds such as polymer chamnsd is  for rational densitie$® When quantum fluctuations of the
for instance responsible for bond alternation in polyacetylenelastic field are taken into account Benfatto, Gallavotti, and
chains (CH) (Ref. 8 or annulenes. In two- or three- LebowitZ’ have shown, using a rigorous version of the
dimensional systems, this instability is not generic becauseenormalization-group analysis valid for spinless electrons in
of the more complicated shape of the Fermi surface. Howene dimension, that there is no instability for weak electron-
ever, if the Fermi surface has nesting propertfesexample  phonon coupling and the electron correlation functions are
on a square lattice at half filling it is perfectly nestethe  those of a Luttinger liquid. We note that their analysis holds
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for any electron filling but breaks down when electron spin is
included. Also it does not cover the case of large electron- Hy= X tyyCx Cy 2.2
phonon coupling. A very general result of Freericks and xyen
Lieb™ asserts that for any even number of electrons on avherec, andc, are the creation and annihilation operators
finite lattice, the ground state of the Holstein model is uniqueéfor an electron at sit&. They satisfy the canonical anticom-
and has zero total spin. This property is compatible with thenytation relations {c) ,C;}:{Cx ,c,}=0 and {cf Cy}
presence or absence of a Peierls or other instabilities and Sxy. The hopping amplitudes,,=0 for [x—y|#1 and
with the uniqueness or nonunigueness of ground or Gibbg —¢i®y for [x—y|=1 where the phases,, are chosen in
states in thermodynamic limit, as long as the system is in &ych a way that there is a magnetic fluxacross each el-
singlet state. _ _ ___ementary plaquette of the lattice, i.& aquetdxy= 7. We

In this paper, we consider the two and three dimensionathooseN to be even and, as explained in the introduction,
situation for a modified Holstein model taking into accountimpose such an external magnetic flux in order to have a

quantum fluctuations of the elastic field exactly. Our modelygmiltonian, which exhibits the reflection positivity prop-
consists of noninteracting spinless electrons on square, hexrty,

agonal or cubic lattices interacting with an optical phonon  The Hamiltonian for the phonortd?" is

branch, which is appropriately curved. For this special pho-

non branch, we are able to use infrared bounds together with " N

a recent result on the coexistence of long-range order for HRY :; w(K)(by by +1/2), (2.3
electron and phonon fields, to prove that a period two CDW

forms at strong coupling and half filling. Our result showswhere the creation and annihilation operators for a phonon
that at least for some regime of parameters the Peierls instavith wave vectork=(kq,... kq) satisfy commutation rela-
bility survives quantum and thermal fluctuations. The regimajons (b, ,b;,]:[bk,bk,]:o, All k sums are over the first
that we identify is independent of the strength of the quangyiliouin zone associated with the lattice. In the standard
tum fluctuations. Our use of infrared bounds is based on theyg|siein model, one has a flat dispersion relatiofk) = w
recent observation that some fermion Hamiltonians have the.
reflection positivity property if the hopping matrix satisfies yere e consider a slightly curved dispersion relation of the
some sign condition¥:™® These conditions are most easily 5y,

expressed in terms of the “magnetic flux” through a

plaquette, i.e., the phase of the product of hopping ampli- 8a
w(k)= \/w2+ Y

x/m wherem is a mass andk the oscillator constarit.

tudes around an elementary loop of the lattice. For a square
or cubic lattice it turns out that the magnetic flux through

squares must be equal 1o whereas for hexagonal lattice the \yhere o is some positive parameter, the reason being that
magnetic flux through hexagons must vanish. We note that it (2 4) is compatible with reflection positivity. In fact there
is not necessary to interpret this sign condition in terms ofg 3 general class of dispersion relations that we could allow,

magnetic flux. For example in some situations the arrangepe simplest of which is Eq2.4), but we will not pursue this
ment of orbitals of neighboring atoms may lead to overlapisge here.

integrals having these sign properties. Such a situation has gqy the electron-phonon interaction we choose the simple
been encountered in coupled polymer chdimnd has also form
been the subject of speculations in the chemistry litereture.

The paper is organized as follows. In Sec. Il, we give the

d
d+_21 coski), (2.4)

formal definition of the model, the main results and we out- HiMt=g> (b_x+b)py, (2.5

line the general strategy of the proof. Section Il deals with k' v2mo(k)

the coexistence of long-range order for electron and phonofnere p, is the Fourier transform of the electronic density
fields in a form which relates their associated correlatio —1/2=cco—1/2

functions. This is then combined with the infrared bounds * XX

derived in Sec. IV to complete the proof for the square and eikx

cubic lattices in Sec. V. The necessary modifications for the = > ——(n,—1/2). (2.6
hexagonal lattice are given in Sec. VI. Finally, we conclude Xer V|A|

by a discussion of a few open problems, that may be studied . .

within the present formalism. It turns out to be more convenient to use the direct space

language. We introduce the conjugate varialdgsand py

II. DEFINITION OF THE MODEL AND MAIN RESULTS with [Sx,py]=|5xy,

We consider a system of electrons and phonons interact- _2 elkx b+ b*
ing on a finite hypercubic lattichl X - --X N with N even, in ST < W m( kHboy)
d dimensions and with periodic boundary conditions. We call
|A|=N¢ the volume of the system. The Hamiltonian under ikox q
consideration has the form Py=2>, jﬁimw“_btk)' 2.7
k
Hy=HS+HR+HT (2.2)

In these variables, the Hamiltonian for the phonons has the
% is the kinetic Hamiltonian of spinless electrons form



13 486 N. MACRIS AND C.-A. PIGUET PRB 60

[ showing that there is no long-range order since 412
HR"= > >mt 3o D si+a 2 (sx+sy)? (2.8 tends to zero a$A|—. We can thus conclude that the
xeh €M 2xen x=yl=1 long-range orders will appear only if the electron-phonon
and the electron-phonon interaction is on-site interaction is present. For this reason, this modified model
provides an example of long-range order induced by the
1 electron-phonon interaction in the presence of realistic quan-
Ny— 5) : (2.9 tum fluctuations.

Let us summarize the main steps for the strategy of the
The Hamiltonian(2.1) is invariant under the following uni- proof. First, in Sec. Ill, we establish the coexistence of the

tary transformation Sy— — Sy, C;r_>(_ 1)‘X‘CX1 Cy— two |Ong-|’ange Ordgrs Eq&l@ and(211) For-thiS we use

(—1)Xc; . As a consequence, we have that the thermal exteSults developed in a previous pafewith which we can
pectation valugdenoted by(—),) of the number of elec- get a relation between the two-point Duhamel functions

trons is half the number of sites and the one of ¢haari-  (S-k>Sda @nd (b—,pi)  for anyk. If we use this relation at
ables is zero(nX>A=% (s)A=0 for any temperaturg . k=kg, this shows the coexistence we are looking for. How-

In this paper, we are interested in the two long-range or€Ver: in the next steps of the proof_, we will also _need this
ders for thes, and n, variables atky=(w,, ) in three relation for k#ky. In Sec. IV, we f|nq an upper mfrared
dimensions and,= (7, ) in two dimensions, i.e., we will Pound for the Duhamel two-point functions (,, ), using

show that there exists; and e, independent oft such that reflection positivity and, with the help of the previously men-
tioned relation, we deduce an infrared bound fer (,py) A -

1 1 In Sec. V, we use a theorem of Dyson-Lieb-Sirfibto ob-
W<S—kosko>A:W > (—1)|X|+|yl(sxsy>A>61>0 tain an upper bound on the two-point correlation function
xyeh {p_wpi)» and then the sum rule

H'=g > s,
XeA

(2.10
and D =3 0 _ Al
- <P—kpk>A_XEA (N=12%y=— (213
1 1
m(p— koPk0>A:mz > (—1)XEM(n—1/2) to prove t_he existence of Iong-_range or@2r11) for the elec-
xyeA tronic variables ak,. A more direct way would have been to
X (ny,—1/2)),= €,>0 (2.12) combine the infrared bound ors (i ,s,), with a sum rule

for the s, variables

for sufficiently largeA and some range of parameters. More
precisely we show that long-range order is present on the _ 2
square lattice at zero temperature ¥+ 32a)/g\/a<0.19 Ek <S_kSk>A_x§A (S (219
and at sufficiently low temperatures ifx{48a)/gy/a
=0.22 for a cubic lattice. It is of interest to notice that the
strong-coupling regime obtained here is independent of thg
massm of the oscillators.

On the hexagonal lattic€Sec. V) we obtain a similar
result for zero-magnetic flufi.e., all hopping terms have the IIl. COEXISTENCE OF LONG-RANGE ORDERS
same sigh namely Eqs(2.10 and (2.11) are valid at zero FOR ELECTRON AND PHONON FIELDS

temperature for £+ 24a)/g/a=0.18. . _ In a previous paper, we have developed a general formal-
It has to be noticed that in the two-dimensional casessm to discuss the possible coexistence of two long-range
(square and hexagonal lattigesur result is limited to zero  grgers in a quantum system at finite temperdfunehich we
temperature but this is probably an artifact of our techniquesymmarize below. The Duhamel two-point function of two
Since the symmetry breaking involved in this model is dis-gperators= and G is defined by
crete(Ising like), we expect the result to be valid also at low
temperatures. 1 (1
One would think that the adjunction of theterm in the (F,G)AZZ—J dvTr(e” "AHaFe” (17VAHAG). (3.D)
phonon Hamiltonian is able to create the long-range order A0
(2.10 even ag=0 since it has tendency to force two nearestThe Duhamel two-point functionH*,F), is related to the
neighborss, ands, to have opposite signs or, in the phonon symmetrized two-point correlation function through upper
language, the modg, is the most favorable energetically and lower bounds
since w(k) is minimum for k=ky. This is in fact not the
case. Indeed we can compute explicitly in the cgsed the  3(F F+FF ") f[hy(F)]<(F",F),<3(F'F+FF™),

It would be sufficient to have a lower bound for this quantity,
ut we were unable to find a convenient one. We will come
ack to this point at the end of Sec. V.

expectation value we are interested in. We find (3.2
where
i<37k Sk >A:_12 > (—1)KE(s s ), +
[A] L VIV = Y hy(F)= ([F".[BHA FIDA 3.3
11 ) . 2(F*F+FF '), '
- 1+ — ) (2.12 _ S
|A| 2me ef*—1 and the functiorf (u) is defined implicitly foru>0 by
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1
f(utanhu)= Gtanhu. (3.9

The functionf (u) is continuous, convex and strictly decreas-

ing with lim,_of(u)=1 and lim,_,., f(u)=0.

Let us suppose that the following commutation relation is

satisfied between three local operatéss B,, andC,

[Hy A= uBy+vCy (3.5

whereu andv are two complex numbers. L& ,B,,Cy the
Fourier transforms defined as in Eg.6). As a consequence
of Eq. (3.5 we have the following relation between the Du-
hamel two-point functions oB, andC, (Ref. 22

1
[l V(By B =7 V(C{ ,CalP< E<[Ak+ Kid)a
(3.6

whereK, =[H, ,A].
With the help of inequalitie$3.2) and (3.6), we deduce
the following general theorem of coexistefite

Theorem 1

Assume there exist three local observalfigsB, ,C, sat-
isfying Eq.(3.5). Suppose also that, for a givénthere exist
three positive constants,, b,, andc, independent ofA|
such that([A; .[HA AdDa=<ax, ([Bg .[Hy.BilD)a=by,
and({[C, ,[HA,Ci]])a=ck. Then for any temperaturg !
and any sufficiently largd, there exists; independent of\
such that

1 + +
W<Bk Bkt BiBy )a=€,>0 (3.7

if and only if there exists, independent of\ such that

1

|A| <C:Ck+ CkC;>A> 62>0.

(3.9

To apply these results to our Hamiltonié2. 1), we note
the following commutation relation

[H,p]=i| (k+8ad)s+4a >, s, |+ig(n,—3)=iS,
ly-X-1
+ig(ne—3). (3.9
Since the Fourier transform &, is
d
S=|k+4a 2d+2i21 coski”sk (3.10

Eq. (3.6) becomes

1
(V(S_1,S)A—IV(p—k.pr) )< E<[p—ka[Hapk]]>A-
(3.11)
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d
k+4al 2d+2, cosk) NN
<1
2 4 d
<1

(3.12

We will need inequality(3.12 in the next sections fok

# Ky . For the case under consideration in this section, i.e., to
prove the coexistence of the two long-range orderk at
=ky, we evaluate Eq3.12 atk=k, to get

K\(S- kg Skg) A= (P 1y Pr) A — \/% (3.13

We can now get information about the two-points correlation
functions using the lower and upper bour8<?). Since the
s, are commuting variables

(3.19

For the lower bound involving the electronic densities, we
need to compute the double commutator

(S—kyrSkg) A={S—kySko)A -

1 .
(- [Hnd1= 157 > ty(2cogk-(y—x)]1-2)c; ¢, .

A| X,yeA
(3.1

The expectation value of E¢3.15 is bounded by 8 since
|ty,(2 cogk(y—x)]—-2)|<4 and [(c/cy),|<1. Since the
functionf is decreasing, we can replace the double commu-
tator by & and get

45d

<PkOPkO>A). 319

(pkoapko)A><Pk0pko>Af(

where we also used the fact that the variables commute.
Finally, from Egs.(3.13, (3.14), and(3.16

2pd K
s img=on | ] Vi
(3.17

This last inequality shows that o py)a=O(|Al), we
have also thafs_y s,)»=O(|A[) since the functiorf (x)

goes to 1 ax goes to zero. In Sec. IV, we will prove the
existence of the long-range order for the electronic densities
atk=ky. Because of E(q3.17), this implies the existence of
the long-range order in the phonon variables.

To close this section, let us notice that the commutation
relation (3.9 in the caseg=0 immediately leads to the ab-
sence of long-range order in the phonon variables forlany
This is consistent with the exact computati@l12).

IV. INFRARED BOUNDS

The first step is to derive an infrared bound for the Du-
hamel two-point function of the phonon variables (,s,) s

The double commutator on the right-hand side is simply &or any k#k, by using reflection positivity. We couple the

constant equal ta+4«(2d+23; cosk)). Finally, Eq.(3.11)
reads

phonon field in the Hamiltonian to a real symmetric field

hyy s hyy=hyy, as follows

Xy yXxs
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k+4a(2d+ 22, cosk;)
Ha({hyh) = 2 E St a 2 (sx+Sy—hyy)? JP_opors
xy. T2, Loy Yy 9V(P—ic:Pia VABa(2d+ 23, cosk;)

k+4a(2d+23; cosk;)]*?
B

_ K+ 16ad N k+ 16ad

~ J4Ba(2d+ 23, cosk,) JB

_ K+16ad+ Vk+16ad4a(2d+23,; cosk;)
- J4Ba(2d+ 23, cosk;)

4.9

+ 2 txyc:cy+U2 Sy(Ny—3).
=1 XeA

[x=y

In the form(4.1), H, ({hyy}) is not reflection positive. How-
ever, it can be transformed into a reflection positive form
after a succession of appropriate transformations. We stress
that these transformations cannot be done in general for fer-
mions systems because the kinetic term usually does not
have the correct sign properties, except if a fitbs imposed
through each plaquette of the square or cubic lattice. This has
been shown in detail recentfand using these results one
deduces in a standard way that the partition functibnp

2(k+ 16ad)
= .
V4Ba(2d+23,; cosk;)

(4.7)

associated to Eq4.1) satisfiesZ ({h,})<Z, .

We can now expand the left-hand S|de of this last inequal-

ity to second order ifh,,} to obtain

1
hyySy hyryr Sy <—2 h2. .

4.2

This inequality has been derived for real symmeltxi¢ but it
is possible to extend it to complex numbers:

In summary, we have also an infrared bound for the electron
density

(k+16ad)® By
(P—k:PIAS Bag?(2d+23, cosk;) B

4.9

V. PROOF OF LONG-RANGE ORDER FOR THE SQUARE
AND CUBIC LATTICES

Inverting the lower bound in Eq3.2) we obtain an esti-
mate for the two-point correlation function of the electronic

(5.9

variables
1 [B°Cy
(p_kPA=< 5 VBCy coth\/ —=—,
2 4B,

whereB, is defined in Eq(4.8) andC is the upper bound of
the double commutatd3.15

1
h*s,, > heySy| <=—— h,.|2.
(IXY=1 e e A 8B“\><*y=l| !

4.3

For eachk in the first Brillouin zone, we choose,, to be

([n_1,[H,N A =8d=C,. (5.2

efik~x+efik-y

hy=———"—— (4.4 Using Eq.(5.1) and the sum rul€2.13 in the limit of large
VIA| volumes, we get
This immediately leads to the infrared bound for the phonon

1 1
il — d
variables [A] (P—ioPio)n =7 (27r)afd K

V2(k+ 16ad) \/ d
1 X .
(4.5) g a(2d+23; cosk;)

1
(S1:S)A= 75, (2d+ 25, cosk) Y
29 \/
XCOU{W da
(5.3

Inequality (5.3 shows that there is long-range order when-
ever the right hand side is strictly positive. Because of theo-

2d+2> coski> :
From the relation3.12 we transfer the information con- [
tained in Eq.(4.5 onto the Duhamel two-point function for
the electronic densities

ng K+Ada 2d+22 coski) m rem 1 the long-range order occurs both ilhA],l(p,kOpko)A
[ and in 1¥A|(s,koskO>A.
1/2 The integral in Eq.(5.3) can be computed numerically
+{—=| kt+4a 2d+22 coski) } (when B=x), which leads to the condition stated in Sec. I
: for three dimensions
(4.9
()t 982) 022, d=3. and larges. (5.4
——=0.22,d=3, and largep. .
and inserting Eq(4.5) gV I
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In two dimensions, Eq(5.3) is not a convergent integral.
One must first take the limjg— o, which yields an inequal-

ity similar to Eq.(5.3) but with the coth replaced by 1. Com-
puting the remaining integral leads to the condition

(k+32a)

gV

If we fix @ and k, we see that there will be long-range order
for large values ofy. On the other hand, if we fig and «,
there will be long-range order for sufficiently small These
two results are intuitively plausible: there is long-range order FIG. 1. The hexagonal lattice.
for large electron-phonon interaction and also the oscillator
constant should not be too large. Finally, if we §xand «,
the situation fora is more subtle. We see that it should not
be too large and also it should not be too small. In particular.
we are not aIIowgd to set=0 and thus we cannot conclude has to notice that this triangular lattice hidg/2 sites and
anything concerning the Holstein model with a flat branch. thus we have alsp\ |/2K’s in the first Brillouin zong and by
A surprising point is the absence of the mass of theanother quantum number=+1. The eigenenergies are
phonons in the derived conditions. It would not have beerbiven bve. —E. with -
the case if we would have considered the sum f(@ld4). Y €k,r = Tk
Indeed, in this case, we would have transferred inequality
(4.5) onto the two-point correlation function for trsg vari- Ey=3+2[cogk-Uy)+cogk-Uyp) +cogk-Us)],
ables. For this, we need to compute the double commutator 6.1
[s_«,[HA,S]]=1/m that now depends om. With this
method, we obtain the inequality

<0.19,d=2, and B=wx. (5.5

particle hopping on the hexagonal lattice. The eigenfunctions
and eigenvalues are parameterized by a wave védtothe
first Brillouin zone of the triangular lattice defined By(one

and the eigenfunctions are

1 ( e 2> 1 4K e ikx
(S Kk Sk A= (Si)A—
A ko ko/ A= \Sx/AT (5 Wy (x)= , XeA
Al (2m) r T
1 \/ 1 6.2
2 N 2am(2d+ 23, cosk)) g
Yy (X)=———, XxeB,
B — R
COMN Tema(2d+ 23, cosk,)’
where
(5.6
Unfortunately, we are unable to use it since we do not know 3 gikeyj
how to derive a lower bound fafs?), . However, this dis- MZJZI E, (6.3

cussion suggests that a lower bound (sf), would yield
existence of long-range order for another region in the SPaCfhey satisfy the orthogonality relation
of parameters, which would now depend on

VI. THE HEXAGONAL LATTICE (Vi AWy )= 6,0 - (6.9

Using the same technique, we can prove a similar resulfve define the Fourier transform on the hexagonal lattice as

for a two-dimensional hexagonal lattice at zero temperature.
In this case however, we do not need to impose an external
magnetic flux on the system. We can thus choose real posi-
tive hopping amplitudes,,=1 for [x—y|=1 and in direct
space the Hamiltonian is given again by the sum of EQsThe long-range orders we are interested in are the one in the
(22), (23), and(25) This Hamiltonian is still invariant un- tWO_point correlation functiongs_k’Tsk'»A and <(n_k'7_
der a particle-hole transformation and we havg),=3, -1 (ne,— %)), atk=0 andr=—1. The reason is that at
(sx)»=0. The two long-range orders we are interested in arg=0 andr=— 1, we have
the ones corresponding to a “chessboard” configuration for
the s, or then,.

The hexagonal lattice is composed of two sublattiées Soflzi 2 S — L 2 s (6.6)
andB. In Fig. 1, we have represented the sitedAads black AT S T AR T
dots and we have defined the vectors u,, uz and U,
U,, andU;. Itis natural to define the analog of the Fourier since\y=1. Long-range order in this last operator will indi-
transform of a local observabl®, using a basis of eigen- cate the presence of a chessboard configuration. We will
functions of the HamiltoniarEX'yeAtxycjcy for a single- prove that there exit; ande, independent ofA such that

Oir= 24 Wis(X)Ox. (6.5
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1 1 Infrared bounds
m<30,130,1>A:A_|2<( D s 2 S

To derive an infrared bound foS(y ,,Sx ;) » we proceed
as in Eqgs.(4.2—-(4.5. For the hexagonal lattice one can
_ bring Eq.(4.1) into a reflection positive form when the flux
2 Sy 2 Sy)>A>61>O through each plaquette is zero. The analog of Bd) is

3 3
and ()EA ;l h:,x+ui(sx+sx+ui)v>g/_\ ]_21 hy,y+uj(sy+sy+uj) N

1 1 3

— - — — — 1

AT{Po-1P0- 1)1 =] A|z<@<nx 1/2)= 2, (ny 1/2>} = T3 S 2 (6.14
4a,8XEA|:1 J

X

> (ny—12)— > (n,~1/2) > We now choose, .., for xe A to be(for eachk in the first
yeA yeB A

Brillouin zone and each)
=e,>0 (6.8

for large A and zero temperature. The global strategy is ex- Ny xiu.= Le*‘k'x(lﬂL N KU, (6.15
actly the same as for the square lattice in two dimensions. o \/W

We prove the coexistence of the two long-range orders, fin
upper bounds for the Duhamel two-point functions, then fo
the two-point correlation functions and finally we use the
sum rule

r(f]nserting this form into Eq(6.14), we get

1
(S—k,7+SkAS Tap3+ By (6.16
Al
> (P=kPrIA= > <(nx_1/2)2>A:T We can transfer this information onto an inequality on the
kor==1 xeh 6.9 Duhamel two-point functions for the electrons using Eg.

(6.13
to conclude the proof. To prove the first equality in E§;9),

one uses the fact thag\ _, =\ \§ =1. Let us now indicate k+4a(3+ 7E)) k+4a(3+ 7E))
the main steps of the proof insisting on the points that differ 9V(P -k 7:Pk,)AS + 3

from the square lattice case. N4aB(3+ 1)
k+ 24«
Coexistence of the two long-range orders <—— (6.17
. VaB(3+ 7Ey)
For the coexistence of the two long-range orders and the
relation between the Duhamel two-point functions, we haveeading to
the commutation relation
[H,,p]=iS,+iU(n,—1/2) (6.10 ( )< (k+240)® By, (6.18
Px] =i iu(ny,— , . ke PRINS = ——. .
A 1 Px X y P—k,71Pk,7) A gzaﬁ(3+TEk) IB
where
3 Inequalities on two-point correlation functions

&:(K+12“)5x+4“§1 Sxrupr XEA As for the square lattice, the upper bound for the two-

6.1 point correlation function in the electronic density is given

3 by
S,=(k+12a)s,+4a >, S, ,, XeB.
o L B oo /ESr 61
<- .
In Fourier transform, we have (Pt Pr2a =5 VBr.Ch-CO 4B, ' 6.19
Sk.=[x+4a(3+7E))]S , (6.12  whereBy , is the bound given in Eq6.18 andC, , is the

and for the pointk=0, 7=—1 in which we are specially upper bound on the double commutator

interested,Sy _1=kSg_1. With these facts, it is easy to 1

prove the coexistence of the two long-range ordérg and (In_.[HdDaA= e > tey(2— re koY)

(6.9). Then, by Eq(3.6), we obtain the relation between the |Alx3y2A

Duh | two-point functi ;
uhamel two-point functions _ Telk.(X7y))\fk)<Cx+Cy>A$12$Ck,r-

{[K+4a(3+ TEk)] \/(S*k,T, 1Sk,T)A_ U \/(Pfk,r vpk,T)A}z (62@

l . . _ . .
< [x+4a(3+7E)]. 6.13 \I:(l)r;jrllnye,slnv\fgzeztero temperature limp—oo and for large
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1 1 1 szk
—_— 2__
|A|<Po,—1po—1>A 4 ﬁ(zﬂ_)
5 1 [12(k+24a)?
X7=t1§ gza(3+TEk)'
(6.22

Evaluating the integrals in E6.20 leads to the final con-
dition on the hexagonal lattice for zero temperature

K+ 24«

gva

The qualitative behavior in the parametgrsy, and« is the
same as for the square lattice.

<0.18. (6.22

VIl. CONCLUSION

In the present paper we have provided a rigorous proof of
the stability of the Peierls instability at half filling when

Holstein model where the Einstein oscillators at eachssite
e A are replaced by two levels systems modeled with Pauli
matrices. More precisely, in the Hamiltoniasy, is replaced

by o{® andp2/2m by eo{")(e~ 1/m). For such a model, it is
found that in two dimensions the Peierls instability occurs
for all “electron-phonon” coupling for weak enough quan-
tum fluctuationse.?*

Another important issue is the effect of electron spin and
electron-electron Coulomb interaction. Most of the analysis
carried out here is still valid if we consider spin and add to
the Hamiltonian a Hubbard term=,  (ny —1/2)(ny,
—1/2). The coexistence theorem is still valid when applied
for s, and py=1/A|Z,_x(ny;+ Ny —1). Also since the
Hubbard term is reflection positive at half filling we may
deduce again infrared bounds fa&r (,s,) A, and (o_y,p) A -

The extra information that needs to be controlled is a lower
bound for

; <Pfkpk>A:X§A <(nxT+nx1_ 1)2>A:2X§A <nxTnxi>A-

guantum and thermal fluctuations are taken into account. Our 7.2
results are valid for dimensions greater or equal to two for a

modified Holstein model. The regime investigated here idn other words, one needs to prove that there is a finite den-
limited to strong coupling but is independent of the strengthsity of doubly occupied sites in order to obtain a Peierls
of the quantum fluctuations. Of course, we expect that foinstability. WhenU—, (n,;n,;),—0 so that we do not
weak coupling the mass of the oscillators should play a expect to have a Peierls instability and therefore it should be
role but our method does not give any information about thigpresent only for moderate Coulomb interaction. Let us notice
situation. An important drawback of infrared bounds usedthat if Eq.(7.1) is of the order ofy|A| for somey>0, then

here is that we cannot treat the one dimensional case.

the analysis presented in this work automatically implies that

One would also like to treat the standard Holstein modeht half filling there is a CDW period two state.
where the dispersion relation is flat. However we do not
know how to obtain the appropriate infrared bound because ACKNOWLEDGMENTS
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