8,380 research outputs found
Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions
The aim of this paper is to design the polynomial construction of a finite
recognizer for hairpin completions of regular languages. This is achieved by
considering completions as new expression operators and by applying derivation
techniques to the associated extended expressions called hairpin expressions.
More precisely, we extend partial derivation of regular expressions to
two-sided partial derivation of hairpin expressions and we show how to deduce a
recognizer for a hairpin expression from its two-sided derived term automaton,
providing an alternative proof of the fact that hairpin completions of regular
languages are linear context-free.Comment: 28 page
Ciprofloxacin/amikacin combination therapy: evaluation in biofilms of Pseudomonas aeruginosa overproducting efflux pumps
International audienc
Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD
Thermalization of a heavy quark near rest is controlled by the correlator of
two electric fields along a temporal Wilson line. We address this correlator
within real-time, classical lattice Yang-Mills theory, and elaborate on the
analogies that exist with the dynamics of hot QCD. In the weak-coupling limit,
it can be shown analytically that the dynamics on the two sides are closely
related to each other. For intermediate couplings, we carry out
non-perturbative simulations within the classical theory, showing that the
leading term in the weak-coupling expansion significantly underestimates the
heavy quark thermalization rate. Our analytic and numerical results also yield
a general understanding concerning the overall shape of the spectral function
corresponding to the electric field correlator, which may be helpful in
subsequent efforts to reconstruct it from Euclidean lattice Monte Carlo
simulations.Comment: 22 pages. v2: a reference and clarifications added; published versio
Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System
We use the density matrix renormalization group (DMRG) to map out the ground
state of a XY-spin chain coupled to dispersionless phonons of frequency . We confirm the existence of a critical spin-phonon coupling for the onset of the spin gap bearing the signature of
a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover
when the spin-Peierls gap is of order . In the classical
regime, , the mean-field parameters are strongly renormalized
by non-adiabatic corrections. This is the first application of the DMRG to
phonons.Comment: 10 pages, 5 figures. To be published in PR
Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries
The coalescences of binary black hole (BBH) systems, here taken to be
non-spinning, are among the most promising sources for gravitational wave (GW)
ground-based detectors, such as LIGO and Virgo. To detect the GW signals
emitted by BBHs, and measure the parameters of the source, one needs to have in
hand a bank of GW templates that are both effectual (for detection), and
accurate (for measurement). We study the effectualness and the accuracy of the
two types of parametrized banks of templates that are directly defined in the
frequency-domain by means of closed-form expressions, namely 'post-Newtonian'
(PN) and 'phenomenological' models. In absence of knowledge of the exact
waveforms, our study assumes as fiducial, target waveforms the ones generated
by the most accurate version of the effective one body (EOB) formalism. We find
that, for initial GW detectors the use, at each point of parameter space, of
the best closed-form template (among PN and phenomenological models) leads to
an effectualness >97% over the entire mass range and >99% in an important
fraction of parameter space; however, when considering advanced detectors, both
of the closed-form frequency-domain models fail to be effectual enough in
significant domains of the two-dimensional [total mass and mass ratio]
parameter space. Moreover, we find that, both for initial and advanced
detectors, the two closed-form frequency-domain models fail to satisfy the
minimal required accuracy standard in a very large domain of the
two-dimensional parameter space. In addition, a side result of our study is the
determination, as a function of the mass ratio, of the maximum frequency at
which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB
waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.
On p_T-broadening of high energy partons associated with the LPM effect in a finite-volume QCD medium
We study the contributions from radiation to -broadening of a high
energy parton traversing a QCD medium with a finite length . The interaction
between the parton and the medium is described by decorrelated static multiple
scattering. Amplitudes of medium-induced gluon emission and parton self-energy
diagrams are evaluated in the soft gluon limit in the BDMPS formalism. We find
both the double-logarithmic correction from incoherent scattering, which is
parametrically the same as that in single scattering, and the logarithmic
correction from the LPM effect. Therefore, we expect a parametrically large
correction from radiation to the medium-induced -broadening in
perturbative QCD.Comment: 19 pages, focusing only on calculations about the medium-induced
diagrams, origin for double-log reinterpreted, final version to appear in
JHE
Impact de la méthodologie CA-SFM/EUCAST 2015 sur l'évaluation de l'activité de l'amoxicilline-acide clavulanique vis-à-vis de souches de Escherichia coli
International audienc
Response of VIRGO detectors to pre-big-bang gravitons
The sensitivity achievable by a pair of VIRGO detectors to stochastic and
isotropic gravitational wave backgrounds produced in pre-big-bang models is
discussed in view of the development of a second VIRGO interferometer. We
describe a semi-analytical technique allowing to compute the signal-to-noise
ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic
gravitons of arbitrary slope. We apply our results to the case of two
correlated and coaligned VIRGO detectors and we compute their achievable
sensitivities. We perform our calculations both for the usual case of minimal
string cosmological scenario and in the case of a non-minimal scenario where a
long dilaton dominated phase is present prior to the onset of the ordinary
radiation dominated phase. In this framework, we investigate possible
improvements of the achievable sensitivities by selective reduction of the
thermal contributions (pendulum and pendulum's internal modes) to the noise
power spectra of the detectors. Since a reduction of the shot noise does not
increase significantly the expected sensitivity of a VIRGO pair (in spite of
the relative spatial location of the two detectors) our findings support the
experimental efforts directed towards a substantial reduction of thermal noise.Comment: 23 pages in Latex styl
- …