7 research outputs found

    Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy

    Full text link
    Recent observations on Type-Ia supernovae and low density (Ωm=0.3\Omega_{m} = 0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type `exotic matter' with negative-pressure often said `dark energy' (Ωx=0.7\Omega_{x} = 0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that `the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe'. It is also explained why for dark energy the parameter w=2/3w = - {2/3}. Noting that w=1 w = 1 for stiff matter and w=1/3w = {1/3} for radiation; w=2/3w = - {2/3} is for dark energy because "1""-1" is due to `deficiency of stiff-nuclear-matter' and that this binding energy is ultimately released as `radiation' contributing "+1/3""+ {1/3}", making w=1+1/3=2/3w = -1 + {1/3} = - {2/3}. When dark energy is released free at Z=80Z = 80, w=2/3w = -{2/3}. But as on present day at Z=0Z = 0 when radiation strength has diminished to δ0\delta \to 0, w=1+δ1/3=1w = -1 + \delta{1/3} = - 1. This, thus almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates /predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction

    From soft to superhard: Fifty years of experiments on cold-compressed graphite

    No full text
    In recent years there have been numerous computational studies predicting the nature of cold-compressed graphite yielding a proverbial alphabet soup of carbon structures (e.g., bct-C4, K4-, M-, H-, R-, S-, T-, W- and Z-carbon). Although theoretical methods have improved, the inherent nature of graphite (i.e., low-Z) and the subsequent room-temperature, high-pressure phase transition (i.e., low symmetry, nanocrystalline and sluggish), make experimental measurements difficult to execute and interpret even with the current technology of 3rd generation synchrotron sources. The room-temperature, high-pressure phase transition of graphite has been detected by numerous kinds of experiments over the past fifty years, such as electrical resistance measurements, optical microscopy, X-ray diffraction, inelastic X-ray scattering, and Raman spectroscopy. However, the identification and characterization of high-pressure graphite is replete with controversy since its discovery more than fifty years ago. Recent experiments confirm that this phase has a monoclinic structure, consistent with the M-carbon phase predicted by theoretical computations. Meanwhile, experiments demonstrate that the phase transition is sluggish and kinetics is important in discerning the phase boundary. Additionally, the post-graphite phase appears to be superhard with hardness comparable to that of diamond.В останні роки було проведено велику кількість чисельних досліджень, що прогнозують основні властивості графіту, підданого стисненню при кімнатній температурі, в результаті чого виникає загальновідомий “алфавітний суп” з вуглецевих структур (наприклад, bct-C₄, K₄-, M- , H-, R-, S-, T-, W-і Z-вуглець). Тоді як теоретичні методи стали більш досконалими, природа, притаманна графіту (тобто низьке Z), і подальший фазовий перехід при кімнатній температурі і високому тиску (низькосиметричний, нанокристалічний і млявий) роблять експериментальні вимірювання важко здійсненними і їх складно інтерпретувати навіть із застосуванням сучасної технології, що використовує 3-е покоління синхротронних джерел. За минулі 50 років фазовий перехід графіту при кімнатній температурі і високому тиску був виявлений багатьма видами експериментів, таких як вимірювання електроопору, оптична мікроскопія, дифракція рентгенівських променів, непружне розсіювання рентгенівських променів і раманівська спектроскопія. Однак з дня його відкриття більше 50 років тому ідентифікація та отримані характеристики графіту високого тиску повні суперечностей. Недавні експерименти підтверджують, що ця фаза має моноклинну структуру, узгоджується з М-вуглецевої фазою, передбаченою теоретичними розрахунками. Поки експерименти демонструють, що фазовий перехід є повільним, а при розпізнаванні фазових границь важливе значення має кінетика процесу. Крім того, пост-графітова фаза є надтвердою, за твердістю близькою до алмазу.В последние годы было проведено большое количество численных исследований, предсказывающих основные свойства графита, подвергнутого сжатию при комнатной температуре, в результате чего возникает пресловутый “алфавитный суп” из углеродных структур (например, bct-C₄, K₄-, M-, H-, R-, S-, T-, W- и Z-углерод). В то время как теоретические методы стали более совершенными, природа, присущая графиту (т. е. низкое Z), и последующий фазовый переход при комнатной температуре и высоком давлении (низкосимметричный, нанокристаллический и вялый) делают экспериментальные измерения трудно выполнимыми и их сложно интерпретировать даже с применением современной технологии, использующей 3-е поколение синхротронных источников. За прошедшие 50 лет фазовый переход графита при комнатной температуре и высоком давлении был обнаружен многими видами экспериментов, таких как измерения электросопротивления, оптическая микроскопия, дифракция рентгеновских лучей, неупругое рассеяние рентгеновских лучей и рамановская спектроскопия.. Однако со дня его открытия более 50 лет назад идентификация и полученные характеристики графита высокого давления полны противоречий. Недавние эксперименты подтверждают, что эта фаза имеет моноклинную структуру, согласующуюся с М-углеродной фазой, предсказанной теоретическими расчетами. Пока эксперименты демонстрируют, что фазовый переход является медленным, а при распознавании фазовых границ важное значение имеет кинетика процесса. Кроме того, пост-графитовая фаза является сверхтвердой, по твердости близкой алмазу

    Validation of the OAKS prognostic model for acute kidney injury after gastrointestinal surgery

    No full text
    Background Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies.Methods The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study ('IMAGINE') of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study ('Tayside') in major abdominal surgery (2011-2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI.Results In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655-0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323-0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881-0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899).Conclusion The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity.Presented to Association of Surgeons in Training (ASiT) International Conference 2018 (Edinburgh, UK), European Society of Coloproctology (ESCP) International Conference 2018 (Nice, France), SARS (Society of Academic and Research Surgery) 2020 (Virtual, UK).Nephrolog
    corecore