25 research outputs found
Transdermal oestradiol for androgen suppression in prostate cancer: long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme
Background
Androgen suppression is a central component of prostate cancer management but causes substantial long-term toxicity. Transdermal administration of oestradiol (tE2) circumvents first-pass hepatic metabolism and, therefore, should avoid the cardiovascular toxicity seen with oral oestrogen and the oestrogen-depletion effects seen with luteinising hormone releasing hormone agonists (LHRHa). We present long-term cardiovascular follow-up data from the Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme.
Methods
PATCH is a seamless phase 2/3, randomised, multicentre trial programme at 52 study sites in the UK. Men with locally advanced or metastatic prostate cancer were randomly allocated (1:2 from August, 2007 then 1:1 from February, 2011) to either LHRHa according to local practice or tE2 patches (four 100 μg patches per 24 h, changed twice weekly, reducing to three patches twice weekly if castrate at 4 weeks [defined as testosterone ≤1·7 nmol/L]). Randomisation was done using a computer-based minimisation algorithm and was stratified by several factors, including disease stage, age, smoking status, and family history of cardiac disease. The primary outcome of this analysis was cardiovascular morbidity and mortality. Cardiovascular events, including heart failure, acute coronary syndrome, thromboembolic stroke, and other thromboembolic events, were confirmed using predefined criteria and source data. Sudden or unexpected deaths were attributed to a cardiovascular category if a confirmatory post-mortem report was available and as other relevant events if no post-mortem report was available. PATCH is registered with the ISRCTN registry, ISRCTN70406718; the study is ongoing and adaptive.
Findings
Between Aug 14, 2007, and July 30, 2019, 1694 men were randomly allocated either LHRHa (n=790) or tE2 patches (n=904). Overall, median follow-up was 3·9 (IQR 2·4–7·0) years. Respective castration rates at 1 month and 3 months were 65% and 93% among patients assigned LHRHa and 83% and 93% among those allocated tE2. 157 events from 145 men met predefined cardiovascular criteria, with a further ten sudden deaths with no post-mortem report (total 167 events in 153 men). 26 (2%) of 1694 patients had fatal cardiovascular events, 15 (2%) of 790 assigned LHRHa and 11 (1%) of 904 allocated tE2. The time to first cardiovascular event did not differ between treatments (hazard ratio 1·11, 95% CI 0·80–1·53; p=0·54 [including sudden deaths without post-mortem report]; 1·20, 0·86–1·68; p=0·29 [confirmed group only]). 30 (34%) of 89 cardiovascular events in patients assigned tE2 occurred more than 3 months after tE2 was stopped or changed to LHRHa. The most frequent adverse events were gynaecomastia (all grades), with 279 (38%) events in 730 patients who received LHRHa versus 690 (86%) in 807 patients who received tE2 (p<0·0001) and hot flushes (all grades) in 628 (86%) of those who received LHRHa versus 280 (35%) who received tE2 (p<0·0001).
Interpretation
Long-term data comparing tE2 patches with LHRHa show no evidence of a difference between treatments in cardiovascular mortality or morbidity. Oestrogens administered transdermally should be reconsidered for androgen suppression in the management of prostate cancer.
Funding
Cancer Research UK, and Medical Research Council Clinical Trials Unit at University College London
Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5-year follow-up results from the STAMPEDE randomised trial (NCT00268476)
Abiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multiarm, multistage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 years after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomised patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards and flexible parametric models, accounting for baseline stratification factors. One thousand and three patients were contemporaneously randomised (November 2011 to January 2014): median age 67 years; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% unassessable; median PSA 97 ng/mL. At 6.1 years median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0.60 (95% CI: 0.50-0.71; P = 0.31 × 10−9) favoured SOC + AAP, with 5-years survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0.55; 95% CI: 0.41-0.76) and high-risk (HR = 0.54; 95% CI: 0.43-0.69) patients. Median and current maximum time on SOC + AAP was 2.4 and 8.1 years. Toxicity at 4 years postrandomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group
Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5‐year follow‐up results from the STAMPEDE randomised trial (NCT00268476)
This is an accepted manuscript of a paper published by Wiley in International Journal of Cancer on 12/04/2022, available online: https://doi.org/10.1002/ijc.34018 The accepted manuscript of the publication may differ from the final published versionAbiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multi-arm, multi-stage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 yrs after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomized patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards & flexible parametric models, adjusted for baseline stratification factors. 1003 patients were contemporaneously randomized (Nov-2011--Jan-2014): median age 67 yr; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% un-assessable; median PSA 97 ng/mL. At 6.1 yr median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0·60 (95%CI:0·50—0·71; P = 0.31x10−9) favoured SOC + AAP, with 5-yr survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0·55; 95%CI:0·41—0·76) and high-risk (HR = 0·54; 95%CI:0·43—0·69) patients. Median and current maximum time on SOC + AAP was 2.4 yr and 8.1 yr. Toxicity at 4 yr post-randomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group.Cancer Research UK, (CRUK_A12459), Medical Research Council (MRC_MC_UU_12023/25, MC_UU_00004/01), UK Clinical Research Network, and the Swiss Group for Cancer Clinical Research (SAKK).Published onlin
Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol
Background:
Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival.
Methods:
We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544).
Findings:
Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p<0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p<0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (<1%) with standard of care in the abiraterone trial).
Interpretation:
Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years.
Funding:
Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Brevia and Demonstrations Presentations-- Proceedings –
Context is of crucial importance for research and applications in many disciplines, as evidenced by many workshops, symposia, seminars, and conferences on specific aspects of context. � The International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT), the oldest conference series focusing on context, provides a unique interdisciplinary emphasis, bringing together participants from a wide range of disciplines, including artificial intelligence, cognitive science, computer science, linguistics, organizational science, philosophy, psychology, ubiquitous computing, and application areas such as medicine and law, to discuss and report on context-related research and projects. Previous CONTEXT conferences have been held in Rio de Janeiro, Brazil (1997)
Transdermal oestradiol for androgen suppression in prostate cancer: long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme
Background
Androgen suppression is a central component of prostate cancer management but causes substantial long-term toxicity. Transdermal administration of oestradiol (tE2) circumvents first-pass hepatic metabolism and, therefore, should avoid the cardiovascular toxicity seen with oral oestrogen and the oestrogen-depletion effects seen with luteinising hormone releasing hormone agonists (LHRHa). We present long-term cardiovascular follow-up data from the Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme.
Methods
PATCH is a seamless phase 2/3, randomised, multicentre trial programme at 52 study sites in the UK. Men with locally advanced or metastatic prostate cancer were randomly allocated (1:2 from August, 2007 then 1:1 from February, 2011) to either LHRHa according to local practice or tE2 patches (four 100 μg patches per 24 h, changed twice weekly, reducing to three patches twice weekly if castrate at 4 weeks [defined as testosterone ≤1·7 nmol/L]). Randomisation was done using a computer-based minimisation algorithm and was stratified by several factors, including disease stage, age, smoking status, and family history of cardiac disease. The primary outcome of this analysis was cardiovascular morbidity and mortality. Cardiovascular events, including heart failure, acute coronary syndrome, thromboembolic stroke, and other thromboembolic events, were confirmed using predefined criteria and source data. Sudden or unexpected deaths were attributed to a cardiovascular category if a confirmatory post-mortem report was available and as other relevant events if no post-mortem report was available. PATCH is registered with the ISRCTN registry, ISRCTN70406718; the study is ongoing and adaptive.
Findings
Between Aug 14, 2007, and July 30, 2019, 1694 men were randomly allocated either LHRHa (n=790) or tE2 patches (n=904). Overall, median follow-up was 3·9 (IQR 2·4–7·0) years. Respective castration rates at 1 month and 3 months were 65% and 93% among patients assigned LHRHa and 83% and 93% among those allocated tE2. 157 events from 145 men met predefined cardiovascular criteria, with a further ten sudden deaths with no post-mortem report (total 167 events in 153 men). 26 (2%) of 1694 patients had fatal cardiovascular events, 15 (2%) of 790 assigned LHRHa and 11 (1%) of 904 allocated tE2. The time to first cardiovascular event did not differ between treatments (hazard ratio 1·11, 95% CI 0·80–1·53; p=0·54 [including sudden deaths without post-mortem report]; 1·20, 0·86–1·68; p=0·29 [confirmed group only]). 30 (34%) of 89 cardiovascular events in patients assigned tE2 occurred more than 3 months after tE2 was stopped or changed to LHRHa. The most frequent adverse events were gynaecomastia (all grades), with 279 (38%) events in 730 patients who received LHRHa versus 690 (86%) in 807 patients who received tE2 (p<0·0001) and hot flushes (all grades) in 628 (86%) of those who received LHRHa versus 280 (35%) who received tE2 (p<0·0001).
Interpretation
Long-term data comparing tE2 patches with LHRHa show no evidence of a difference between treatments in cardiovascular mortality or morbidity. Oestrogens administered transdermally should be reconsidered for androgen suppression in the management of prostate cancer
Docetaxel for nonmetastatic prostate cancer: Long-term survival outcomes in the STAMPEDE randomized controlled trial
© 2022 The Authors. Published by OUP. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1093/jncics/pkac043Background
STAMPEDE previously reported adding upfront docetaxel improved overall survival for prostate cancer patients starting long-term androgen deprivation therapy. We report long-term results for non-metastatic patients using, as primary outcome, metastatic progression-free survival (mPFS), an externally demonstrated surrogate for overall survival.
Methods
Standard of care (SOC) was androgen deprivation therapy with or without radical prostate radiotherapy. A total of 460 SOC and 230 SOC plus docetaxel were randomly assigned 2:1. Standard survival methods and intention to treat were used. Treatment effect estimates were summarized from adjusted Cox regression models, switching to restricted mean survival time if non-proportional hazards. mPFS (new metastases, skeletal-related events, or prostate cancer death) had 70% power (α = 0.05) for a hazard ratio (HR) of 0.70. Secondary outcome measures included overall survival, failure-free survival (FFS), and progression-free survival (PFS: mPFS, locoregional progression).
Results
Median follow-up was 6.5 years with 142 mPFS events on SOC (3 year and 54% increases over previous report). There was no good evidence of an advantage to SOC plus docetaxel on mPFS (HR = 0.89, 95% confidence interval [CI] = 0.66 to 1.19; P = .43); with 5-year mPFS 82% (95% CI = 78% to 87%) SOC plus docetaxel vs 77% (95% CI = 73% to 81%) SOC. Secondary outcomes showed evidence SOC plus docetaxel improved FFS (HR = 0.70, 95% CI = 0.55 to 0.88; P = .002) and PFS (nonproportional P = .03, restricted mean survival time difference = 5.8 months, 95% CI = 0.5 to 11.2; P = .03) but no good evidence of overall survival benefit (125 SOC deaths; HR = 0.88, 95% CI = 0.64 to 1.21; P = .44). There was no evidence SOC plus docetaxel increased late toxicity: post 1 year, 29% SOC and 30% SOC plus docetaxel grade 3-5 toxicity.
Conclusions
There is robust evidence that SOC plus docetaxel improved FFS and PFS (previously shown to increase quality-adjusted life-years), without excess late toxicity, which did not translate into benefit for longer-term outcomes. This may influence patient management in individual cases.This work was supported by Cancer Research UK (grant number CRUK_A12459); Medical Research Council (grant number MRC_MC_UU_12023/25, grant number MC_UU_00004/01); Sanofi; Astellas; Clovis; Janssen; Novartis; Pfizer. NDJ, CCP, and DPD were supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London.Published versio