170 research outputs found

    The In Silico Prediction of hotspot residues that contribute to the structural stability of subunit interfaces of a Picornavirus Capsid:

    Get PDF
    The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid

    Lineage dynamics of murine pancreatic development at single-cell resolution.

    Get PDF
    Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs

    Combustion Recession after End of Injection in Diesel Spray

    Full text link
    This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel-like sprays. Combustion recession is the process whereby a lifted flame retreats back towards the injector after end-of-injection under conditions that favor autoignition. The motivation for this study is that failure of combustion recession can result in unburned hydrocarbon emissions. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-ofinjection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the spray rate-of-injection transient during the end-of-injection determine the success or failure of combustion recession. The likelihood of combustion recession increases for higher ambient temperatures and oxygen concentrations as well as for higher reactivity fuels. In the transition between high and low ambient temperature (or oxygen concentration), the behavior of combustion recession changes from spatially sequential ignition to separated, or isolated, ignition sites that eventually merge. In contradistinction to typical diesel ignition delay trends where the autoignition times are longer for increasing injection pressure, the time required for combustion recession increases with injection pressure.Knox, BW.; Genzale, C.; Pickett, L.; García-Oliver, JM.; Vera-Tudela, WM. (2015). Combustion Recession after End of Injection in Diesel Spray. SAE International Journal of Fuel and Lubricants. 8(2):1-17. doi:10.4271/2015-01-0797S1178

    Long-term functional recovery after facial nerve transection and repair in the rat

    Get PDF
    BACKGROUND: The rodent model is commonly used to study facial nerve injury. Because of the exceptional regenerative capacity of the rodent facial nerve, it is essential to consider the timing when studying facial nerve regeneration and functional recovery. Short-term functional recovery data following transection and repair of the facial nerve has been documented by our laboratory. However, because of the limitations of the head fixation device, there is a lack of long-term data following facial nerve injury. The objective of this study was to elucidate the long-term time course and functional deficit following facial nerve transection and repair in a rodent model. METHODS: Adult rats were divided into group 1 (controls) and group 2 (experimental). Group 1 animals underwent head fixation, followed by a facial nerve injury, and functional testing was performed from day 7 to day 70. Group 2 animals underwent facial nerve injury, followed by delayed head fixation, and then underwent functional testing from months 6 to 8. RESULTS: There was no statistical difference between the average whisking amplitudes in group 1 and group 2 animals. CONCLUSION: Functional whisking recovery 6 months after facial nerve injury is comparable to recovery within 1 to 4 months of transection and repair, thus the ideal window for evaluating facial nerve recovery falls within the 4 months after injury

    HDAC1 interacts with the p50 NF-κB subunit via its nuclear localization sequence to constrain inflammatory gene expression

    Get PDF
    The NF-κB p50 subunit is an important regulator of inflammation, with recent experimental evidence to support it also having a tumor suppressor role. Classically, p50 functions in heterodimeric form with the RelA (p65) NF-κB subunit to activate inflammatory genes. However, p50 also forms homodimers which actively repress NF-κB-dependent inflammatory gene expression and exert an important brake on the inflammatory process. This repressive activity of p50:p50 is thought to be in part mediated by an interaction with the epigenetic repressor protein Histone Deacetylase 1 (HDAC1). However, neither the interaction of p50 with HDAC1 nor the requirement of HDAC1 for the repressive activities of p50 has been well defined. Here we employed in silico prediction with in vitro assays to map sites of interaction of HDAC1 on the p50 protein. Directed mutagenesis of one such region resulted in almost complete loss of HDAC1 binding to p50. Transfected mutant p50 protein lacking the putative HDAC1 docking motif resulted in enhanced cytokine and chemokine expression when compared with cells expressing a transfected wild type p50. In addition, expression of this mutant p50 was associated with enhanced chemoattraction of neutrophils and acetylation of known inflammatory genes demonstrating the likely importance of the p50:HDAC1 interaction for controlling inflammation. These new insights provide an advance on current knowledge of the mechanisms by which NF-κB-dependent gene transcription are regulated and highlight the potential for manipulation of p50:HDAC1 interactions to bring about experimental modulation of chronic inflammation and pathologies associated with dysregulated neutrophil accumulation and activation

    Interaction of microbiology and pathology in women undergoing investigations for infertility.

    Get PDF
    BACKGROUND: Cases of endometriosis with no tubal damage are associated with infertility, suggesting an immunological rather than mechanical barrier to reproduction. Laparoscopy and falloposcopy results of clinically asymptomatic women undergoing investigation of infertility were correlated with the outcomes of microbiological screening for Chlamydia trachomatis, Mycoplasma pneumoniae, Mycoplasma hominis, ureaplasma species, Neisseria gonorrhoeae, Neisseria meningitidis and Chlamydia pneumoniae. METHODS: A total of 44 women presenting to a hospital IVF service for laparoscopic or laparoscopic/falloposcopic investigation of infertility provided endocervical swabs, fallopian tube washings, and peripheral whole blood for analysis. RESULTS: Of these 44 women, 15.9% (7) showed evidence of C. trachomatis infection as detected by either PCR or EIA serology. Of these 7 women, 5 (71%) had no or mild endometriosis and 2 (29%) had moderate or severe endometriosis. Of the remaining 37 women who showed no evidence of chlamydial infection, 15 (40.5%) had no or mild endometriosis. CONCLUSION: Women with infertility, but without severe endometriosis at laparoscopy, showed a trend towards tubal damage and a higher rate of previous C. trachomatis infection. Although not statistically significant, this trend would suggest that, where moderate to severe tubal damage is found to be the primary cause of infertility, C. trachomatis infection could be a likely cause for such tubal damage

    Morphological and genetic characterization of a South African Plutella xylostella granulovirus (plxy GV) isolate

    Get PDF
    Plutella xylostella (L.) (Lepidoptera: Plutellidae), also known as diamondback moth, is a destructive insect pest of cruciferous crops (Talekar and Shelton 1993; Shelton 2004). The pest occurs wherever its host plants are cultivated and the global annual cost of damage and control is estimated to be US$4-5 billion (Zalucki et al. 2012). The extensive use of synthetic pesticides for control combined with the high fecundity of P. xylostella has resulted in the pest developing resistance to nearly all classes of insecticides (Grzywacz et al. 2009). Moreover, these chemicals have negative environmental implications and may affect non-target species, some of which are natural enemies of the pest

    Comparison of the biology of geographically distinct populations of the citrus pest, Thaumatotibia leucotreta (Meyrick)(Lepidoptera: Tortricidae)

    Get PDF
    Baculovirus biopesticides are an important component of integrated pest management programmes worldwide. One such example is the Cryptophlebia leucotreta granulovirus (CrleGV) which is used for the control of false codling moth, Thaumatotibia (= Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of citrus and other crops in South Africa. A potential problem associated with constant application of viral biopesticides is the differing susceptibility to the virus observed between different geographic populations of the insect host. This could be related to a number of factors, including biological performance and fitness of the target insect population. This study compared a variety of phenotypic traits between geographically distinct T. leucotreta populations collected from the Addo, Marble Hall, Citrusdal and Nelspruit regions of South Africa, and reared under laboratory conditions for several generations. Traits including pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and developmental time were used as parameters to measure biological performance and fitness. Insects from the Citrusdal region of the Western Cape exhibited significantly lower pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and the longest duration in larval and pupal development compared to the other colonies investigated. This is the first study to report differences in the performance of laboratory reared T. leucotreta from different geographic locations, and the findings may have important implications for the application of viral biopesticides for the control of this pest in South Africa
    corecore